» »

Беспроводная сеть Wi-Fi. Какое оборудование необходимо для создания беспроводной сети

09.02.2020
  • Tutorial

С практической точки зрения было бы удобно управлять Wi-Fi сетями, выдавая пароль каждому пользователю. Это облегчает задачу с доступом к вашей беспроводной сети. Используя так называемую WPA2 PSK авторизацию, чтобы предотвратить доступ случайному пользователю, нужно менять ключ, а также заново проходить процесс авторизации на каждом отдельном Wi-Fi устройстве. Кроме того, если вы имеете несколько точек доступа, ключ нужно менять на всех из них. А если Вам надо скрыть пароль от кого-нибудь, придется раздать всем сотрудникам новый.

Представим ситуацию - к вам в офис зашел кто-то посторонний (клиент, контрагент?), и нужно дать ему доступ в интернет. Вместо того, чтобы давать ему WPA2 - ключ, можно сделать для него отдельный аккаунт, который потом, после его ухода, можно удалить заблокировать. Это даст вам гибкость в управлении учетками, а пользователи будут очень довольны.

Мы сделаем удобную схему, применяемую в корпоративных сетях, но полностью из подручных средств с минимальными финансовыми и аппаратными вложениями. Ее одобрит служба безопасности и руководство.

Немного теории

Когда-то давно инженерами IEEE был придуман стандарт 802.1x. Этот стандарт отвечает за возможность авторизации пользователя сразу при подключении к среде передачи данных. Иными словами, если для соединения, например, PPPoE, вы подключаетесь к среде(коммутатору), и уже можете осуществлять передачу данных, авторизация нужна для выхода в интернет. В случае же 802.1x вы не сможете делать ничего, пока не авторизуетесь. Само конечное устройство вас не допустит. Аналогичная ситуация с Wi-Fi точками доступа. Решение же о допуске вас принимается на внешнем сервере авторизации. Это может быть RADIUS, TACACS, TACACS+ и т.д.

Терминология

Вообще авторизация пользователя на точке может быть следующих видов:
  • Open - доступна всем
  • WEP - старое шифрование. Уже у всех плешь проедена о том, что его ненадо использовать вообще
  • WPA - Используется TKIP в качестве протокола шифрования
  • WPA2 - Используется шифрование AES

А теперь рассмотрим варианты того, как точка доступа узнает сама, можно ли предоставлять пользователю доступ к сети или нет:

  • WPA-PSK, WPA2-PSK - ключ к доступу находится в самой точке.
  • WPA-EAP, WPA2-EAP - ключ к доступу сверяется с некоторой удаленной базой данных на стороннем сервере

Также существует довольно большое количество способов соедининея конечного устройства к серверу авторизации (PEAP, TLS, TTLS...). Я не буду их здесь описывать.

Общая схема сети

Для наглядного понимания приведем общую схему работы нашей будущей схемы:

Если словами, то клиенту, при подключении к Wi-Fi - точке предлагается ввести логин и пароль. Получив логин и пароль Wi-Fi точка передает эти данные RADIUS-серверу, на что сервер отвечает, что можно делать с этим клиентом. В зависимости от ответа, точка решает, дать ему доступ, урезать скорость или что-то еще.
За авторизацию пользователей будет отвечать наш сервер с установленным freeradius. Freeradius является реализацией протокола RADIUS , который в свою очередь является реализацией общего протокола AAA. AAA - это набор средств для осуществления следующих действий:
Authentication - проверяет допустимость логина и пароля.
Authorization - проверяет наличие прав на выполнение некоторых действий.
Accounting - учитывает ваши дейсвия в системе.
Сам протокол передает имя пользователя, список атрибутов и их значений для него. То есть, например, атрибут Auth-Type:= Reject - отклонить этого клиента, а Client-Password == «password» - сравнить атрибут в запросе со значением password.
Вообще говоря, база аккаунтов и прав для них не обязательно должна храниться на RADIUS-сервере, да и базой может быть что угодно - никсовые пользователи, пользователи домена Windows… да хоть текстовый файлик. Но в нашем случае все будет в одном месте.

Базовая настройка

В этой статье нас будут интересовать в первую очередь WPA2-EAP/TLS способ авторизации.
Практически все современные точки доступа Wi-Fi стоимостью больше 3 тыс. рублей поддерживают нужную нам технологию. Клиентские устройства поддерживают и подавно.
В статье я буду использовать следующее оборудование и програмное обеспечение:
  • Точка доступа Ubiquiti NanoStation M2
  • Сервер Gentoo и Freeradius
  • Клиентское оборудование с установленным програмным обеспечением Windows 7, Android, iOS

Настройка точки доступа

Главное, чтоб точка поддерживала нужный способ аутентификации. Оно может называться по разному в разных устройствах: WPA-EAP, WPA2 Enterprise и т.д. Во всяком случае выбираем аутентификацию, устанавливаем IP-адрес и порт RADIUS-сервера и ключ, который мы вводили в clients.conf при настройке Freeradius.
Приведу картинку с настроенной точки Ubiquiti. Помечено галкой то, что нужно менять.

RADIUS-сервер

Зайдем на наш компьютер с Linux и установим RADIUS-сервер. Я брал freeradius, и ставил я его на gentoo. К моему удивлению, в рунете нет материалов, относящихся к настройке Freeradius 2 для наших целей. Все статьи довольно стары, относятся к старым версиям этого програмного обеспечения.
root@localhost ~ # emerge -v freeradius
Все:) RADIUS-сервер уже может работать:) Вы можете проверить это так:
Это debug-mode. Вся информация вываливается на консоль. Приступем к его настройке.
Как это водится в Linux, настройка выполняется через конфигурационные файлы. Конфигурационные файлы хранятся в /etc/raddb. Сделаем подготовительные действия - скопируем исходные конфиги, почистим конфигурация от всякого мусора.
root@localhost ~ # cp -r /etc/raddb /etc/raddb.olg root@localhost ~ # find /etc/raddb -type f -exec file {} \; | grep "text" | cut -d":" -f1 | xargs sed -i "/^ *\t* *#/d;/^$/d"
Далее добавим клиента - точку доступа. Добавляем в файлик /etc/raddb/clients следующие строки:
root@localhost ~ # cat /etc/raddb/clients.conf | sed "/client test-wifi/,/}/!d" client test-wifi { ipaddr = 192.168.0.1 #IP адрес точки, которая будет обращаться к радиусу secret = secret_key #Секретный ключик. Такой же надо будет поставить на Wi-Fi точке. require_message_authenticator = no #Лучше так, с каким-то D-Linkом у меня не получилось иначе }
Далее добавляем домен для пользователей. Сделаем дефолтовый.
root@localhost ~ # cat /etc/raddb/proxy.conf | sed "/realm DEFAULT/, /^}/!d" realm DEFAULT { type = radius authhost = LOCAL acchost = LOCAL }

Домены в RADIUS

Здесь надо заметить, что можно делить пользователей по доменам. А именно, в формате имени пользователя может указываться домен(например user@radius). DEFAULT означает любой неопределенный домен. NULL - без домена. В зависимости от домена(можно сказать префикса в имени пользователя) можно осуществлять различные действия, как то отдать право аутентифицировать другому хосту, отделять ли имя от домена во время проверки логина и т.д.


И, наконец, добавляем пользователей в файл /etc/raddb/users:
root@localhost ~ # cat /etc/raddb/users | sed "10,$!d" user1 Cleartext-Password:= "password1" user2 Cleartext-Password:= "password2" user3 Cleartext-Password:= "password3"
Ух, можно стартовать!
root@localhost ~ # radiusd -fX
Наш сервер запущен и ждет подключений!

Настройка клиентов

Пробежимся по настройке основных пользовательских устройств. У наших сотрудников есть клиенты, работающие на Android, iOS и Windows 7. Оговоримся сразу: так как мы используем самосозданные сертификаты, то нам нужно несколько раз вносить всевозможные исключения и подтверждать действия. Если бы мы пользовали купленные сертификаты, возможно, все было бы проще.

Всех проще дело обстоит на iOS-устройствах. Вводим логин и пароль, нажимаем «Принять сертификат», и вперед.

Скриншот с IOS


Чуть сложнее выглядит, но на практике все тоже просто на Android. Там немного больше полей для ввода.

Скриншот с Android


Ну и на Windows 7 приедтся немного понастраивать. Осуществим следующие шаги:
Идем в центр беспроводных подключений.

  1. Устанавливаем необходимые параметры в свойствах Вашего беспроводного подключения
  2. Устанавливаем необходимые параметры в расширенных настройках EAP
  3. Устанавливаем необходимые параметры в расширенных настройках Дополнительных параметрах
  4. Подключаемся в панели задач к Wi-Fi сети и вводим логин-пароль, наслаждаемся доступом к Wi-Fi

Скриншоты Windows

Шаг 1


Шаг 2

Шаг 3


Шаг 4

Шаг 5


Собственный мини-биллинг

Теперь осталась одна проблема - если вы захотите добавить-удалить нового пользователя, то вам придется изменить users и перезапустить radius. Чтобы этого избежать подключим базу данных и сделать свой собственный мини-биллинг для пользователей. Используя БД, вы всегда сможете набросать простенький скрипт для добавления, блокировки, изменения пароля пользователя. И все это произойдет без останова всей системы.

Для себя я использовал Postgres, вы же можете выбрать по своему усмотрению. Я привожу базовую настройку Postgres, не углубляясь в различные права доступа, пароли и прочие хитрости и удобства.

Для начала создаем саму базу данных:

Root@localhost ~ # psql -U postgres radius_wifi=> create user radius_wifi with password 1111; radius_wifi=> create database radius_wifi with owner=radius_wifi; radius_wifi=> \q

Далее надо создать нужные таблицы. Вообще с Freeradius идет документация по схемам таблиц для различных баз данных, правда в различных дистрибутивах находятся они в разных местах. У меня лично это лежит в /etc/raddb/sql/postgresql/schema.sql. Просто вставьте эти строки в psql, либо просто запустите

Root@localhost ~ # cat /etc/raddb/sql/postgresql/schema.sql | psql -U radius_wifi radius_wifi

На всякий случай добавлю сюда схему для Postgres:

Схема для Postgres

root@localhost ~ # cat /etc/raddb/sql/postgresql/schema.sql | sed "/^--/d;/\/\*/d;/\*/d;/^$/d;" CREATE TABLE radacct (RadAcctId BIGSERIAL PRIMARY KEY, AcctSessionId VARCHAR(64) NOT NULL, AcctUniqueId VARCHAR(32) NOT NULL UNIQUE, UserName VARCHAR(253), GroupName VARCHAR(253), Realm VARCHAR(64), NASIPAddress INET NOT NULL, NASPortId VARCHAR(15), NASPortType VARCHAR(32), AcctStartTime TIMESTAMP with time zone, AcctStopTime TIMESTAMP with time zone, AcctSessionTime BIGINT, AcctAuthentic VARCHAR(32), ConnectInfo_start VARCHAR(50), ConnectInfo_stop VARCHAR(50), AcctInputOctets BIGINT, AcctOutputOctets BIGINT, CalledStationId VARCHAR(50), CallingStationId VARCHAR(50), AcctTerminateCause VARCHAR(32), ServiceType VARCHAR(32), XAscendSessionSvrKey VARCHAR(10), FramedProtocol VARCHAR(32), FramedIPAddress INET, AcctStartDelay INTEGER, AcctStopDelay INTEGER); CREATE INDEX radacct_active_user_idx ON radacct (UserName, NASIPAddress, AcctSessionId) WHERE AcctStopTime IS NULL; CREATE INDEX radacct_start_user_idx ON radacct (AcctStartTime, UserName); CREATE TABLE radcheck (id SERIAL PRIMARY KEY, UserName VARCHAR(64) NOT NULL DEFAULT "", Attribute VARCHAR(64) NOT NULL DEFAULT "", op CHAR(2) NOT NULL DEFAULT "==", Value VARCHAR(253) NOT NULL DEFAULT ""); create index radcheck_UserName on radcheck (UserName,Attribute); CREATE TABLE radgroupcheck (id SERIAL PRIMARY KEY, GroupName VARCHAR(64) NOT NULL DEFAULT "", Attribute VARCHAR(64) NOT NULL DEFAULT "", op CHAR(2) NOT NULL DEFAULT "==", Value VARCHAR(253) NOT NULL DEFAULT ""); create index radgroupcheck_GroupName on radgroupcheck (GroupName,Attribute); CREATE TABLE radgroupreply (id SERIAL PRIMARY KEY, GroupName VARCHAR(64) NOT NULL DEFAULT "", Attribute VARCHAR(64) NOT NULL DEFAULT "", op CHAR(2) NOT NULL DEFAULT "=", Value VARCHAR(253) NOT NULL DEFAULT ""); create index radgroupreply_GroupName on radgroupreply (GroupName,Attribute); CREATE TABLE radreply (id SERIAL PRIMARY KEY, UserName VARCHAR(64) NOT NULL DEFAULT "", Attribute VARCHAR(64) NOT NULL DEFAULT "", op CHAR(2) NOT NULL DEFAULT "=", Value VARCHAR(253) NOT NULL DEFAULT ""); create index radreply_UserName on radreply (UserName,Attribute); CREATE TABLE radusergroup (UserName VARCHAR(64) NOT NULL DEFAULT "", GroupName VARCHAR(64) NOT NULL DEFAULT "", priority INTEGER NOT NULL DEFAULT 0); create index radusergroup_UserName on radusergroup (UserName); CREATE TABLE radpostauth (id BIGSERIAL PRIMARY KEY, username VARCHAR(253) NOT NULL, pass VARCHAR(128), reply VARCHAR(32), CalledStationId VARCHAR(50), CallingStationId VARCHAR(50), authdate TIMESTAMP with time zone NOT NULL default "now()");

Отлично, база подготовлена. Теперь законфигурим Freeradius.
Добавьте, если ее там нет, в /etc/raddb/radiusd.conf строку

$INCLUDE sql.conf

Теперь отредактируйте /etc/raddb/sql.conf под вашу реальность. У меня он выглядит так:

Мой sql.conf

root@localhost ~ # cat /etc/raddb/sql.conf sql { database = "postgresql" driver = "rlm_sql_${database}" server = "localhost" login = "radius_wifi" password = "1111" radius_db = "radius_wifi" acct_table1 = "radacct" acct_table2 = "radacct" postauth_table = "radpostauth" authcheck_table = "radcheck" authreply_table = "radreply" groupcheck_table = "radgroupcheck" groupreply_table = "radgroupreply" usergroup_table = "radusergroup" deletestalesessions = yes sqltrace = no sqltracefile = ${logdir}/sqltrace.sql num_sql_socks = 5 connect_failure_retry_delay = 60 lifetime = 0 max_queries = 0 nas_table = "nas" $INCLUDE sql/${database}/dialup.conf }


Добавим несколько новых пользователей test1, test2, test3, и… заблокируем test3

Root@localhost ~ # psql -U postgres radius_wifi=> insert into radcheck (username, attribute, op, value) values ("test1", "Cleartext-Password", ":=", "1111"); radius_wifi=> insert into radcheck (username, attribute, op, value) values ("test2", "Cleartext-Password", ":=", "1111"); radius_wifi=> insert into radcheck (username, attribute, op, value) values ("test3", "Cleartext-Password", ":=", "1111"); radius_wifi=> insert into radcheck (username, attribute, op, value) values ("test3", "Auth-Type", ":=", "Reject");

Ну, перезапускаем freeradius и пробуем подключиться. Должно все работать!

Конечно биллинг получился ущербный - у нас нигде не хранится информации по аккаунтингу(учету действий пользователя), но и нам здесь этого не надо. Чтобы вести аккаунтинг, необходимы еще и Wi-Fi точки подорооже, чем 3 тыс. рублей. Но уже и так мы с легкостью управлять пользователями.
radius

  • eap
  • wi-fi
  • freeradius
  • tls
  • wpa
  • wpa2
  • Добавить метки

    Человек - существо социальное. Это определение подразумевает прежде всего общение между различными людьми. Со всеми сразу или по отдельности не имеет значения. Наши далекие предки смогли реализовать заложенные в них природой возможности для коммуникации. Воздух, выдыхаемый особым образом, стал оформляться в слова, которые позже получили и графическое представление в виде письменности.

    Тем не менее, общение при помощи звука оставалось и остается наиболее предпочтительным. Долгое время мы пользовались естественными способами передачи звуковых волн: кричать на как можно более далекое расстояние при этом жестикулируя всеми возможными конечностями, показывая что мы чего-то хотим от кого-то, кто сейчас далеко; либо просто можно было передать что надо через посредника.

    Во второй половине XIX века назад голос стали передавать по проводам. Скорость возросла на несколько порядков - теперь достаточно было поднять трубку и через несколько секунд слышишь человека на другом континенте за 20000 километров. Технологии прошлого века сделали связь еще более доступной и удобной. Она стала беспроводной. Сегодня можно "выловить" почти кого угодно где бы он не находился. Другое дело, что не все рады такой "свободе", особенно те, для которых она стала еще одним способом контроля, но рассказ не об этом.

    Компьютеры позволили передавать на расстояния не только звук (в частности голос), но и текст, а в последнее время все более популярным сервисом становится передача видео. Причем если пронаблюдать за последними тенденциями, то компьютерные сети становятся: а) беспроводными; и б) глобальными. Именно во всем разнообразии стандартов беспроводных цифровых сетей мы и попробует разобраться в этой статье.

    Сотовую связь, последние поколения которой упорно становятся "родными" не только для телефонов, но и для компьютеров, мы затрагивать не будем. Это сделано в нашей другой статье: " ". Здесь мы коснемся тех сетей, что создаются на менее "глобальном" уровне, но в то же время весьма распространены.

    Многие современные беспроводные стандарты поддерживают работу с почти любым ПК, но некоторые из них разработаны для несколько менее универсальных, но в то же время очень популярных устройств. Например, сотовые телефоны. Ведь многие из них сегодня могут передавать и принимать данные не только из сетей GSM (NMT, CDMA и других), но вести обмен данными с локальными девайсами. Именно с беспроводных сетей малого радиуса действия мы и начнем.

    Bluetooth

    Стандарт Bluetooth (или как его называют в народе - "синий зуб") сегодня является одним из самых известных и распространенных. Он был разработан в 1994 году двумя специалистами Шведской компании Ericsson - Джапом Харстеном (Jaap Haartsen) и Свеном Мэтиссном (Sven Mattisson). Главное назначение Bluetooth - обеспечение обмена данными без проводов между двумя и более устройствами.

    Поскольку у истоков "зуба" стояла компания, занимающаяся производством мобильных телефонов, именно для этих аппаратов и была создана эта технология. Стоит ли удивляться, что одним из первых телефонов, оснащенных модулем Bluetooth, стал Ericsson R520. По сегодняшним меркам это весьма увесистый и функционально обделенный "кирпич", который в свое время был невостребован.

    Почему? Да потому что 6-7 лет назад Bluetooth оснащались буквально пару устройств. Точно такой же была ситуация и с Wi-Fi. Что толку Apple позволила приобрести iBook с опциональной беспроводной сетевой картой, если в продаже было всего пару точек доступа по баснословной цене? Но Wi-Fi запросто можно было сопрягать с обычной проводной сетью, чего с Bluetooth делать не получится. Ведь для обмена данными используется вовсе не стандартизированный всеми и вся протокол TCP/IP, а свой собственный. Но об этом позже.

    Пока коснемся истории вопроса. 20 мая 1998 года было официально объявлено о создании специальной группы Bluetooth Special Interest Group (SIG), которая стала разрабатывать и принимать стандарты для данной технологии. Изначально в ее вошли Ericsson (ныне Sony Ericsson), IBM, Intel, Toshiba и Nokia). Позже к ним присоединились другие. К сегодняшнему дню группой было принято шесть стандартов Bluetooth:

    Bluetooth 1.0 и 1.0B

    Самые первые версии стандарта имели множество ошибок и недоработок. При сопряжении устройств возникали различные проблемы, связь была нестабильной.

    Bluetooth 1.1

    Новая версия стандарта устранила многие ошибки 1.0B, а также была принята как стандарт IEEE 802.15.1-2002. При этом была добавлена поддержка работы через каналы без шифрования данных, а также поддержка индикатора мощности сигнала (Received Signal Strength Indicator - RSSI).

    Bluetooth 1.2

    Версия 1.2 стала пиком развития первого поколения "синего зуба". До сих пор можно найти в продаже устройства с ее поддержкой (например, ноутбуки или телефоны трех-четырех летней давности). В числе ее изменений значатся следующие:

      более быстрый поиск устройств и подключение к ним;

      повышена устойчивость соединения, особенно при движении;

      более высокая скорость обмена данными (на практике до 721 Кбит/с);

      улучшено качество связи со звукопередающей гарнитурой;

      добавлена поддержка HCI (Host Controller Interface).

    Данная версия была принята как стандарт IEEE 802.15.1-2005. Но, довольно скоро его заменило второе поколение Bluetooth.

    Bluetooth 2.0

    Bluetooth 2.0 стал довольно значимым событием в цифровой индустрии. Новые "зубы" теперь могли "пережевывать" гораздо больше данных, о чем явно говорит постфикс "EDR", приплюсовыемый к обновленному названию стандарта: Bluetooth 2.0 + EDR. EDR означает Enhanced Data Rate, что вольно можно перевести как "Зубы в три ряда". Шутка. На самом деле перевод звучит как "Расширенный пропускной диапазон". Скорость в некоторых случаях возросла в 10 раз, но реально не превышала значения 2.1 Мбит/с, а пиковое значение равно 3.0 Мбит/с.

    Что интересно, Bluetooth 2.0 без EDR - это Bluetooth 1.2 с исправленными ошибками. Некоторые устройства поддерживают именно такую его версию, хотя большинство производителей обеспечили повышенную скорость передачи данных. Помимо этого было снижено и энергопотребление.

    Bluetooth 2.1

    Совсем недавно был принят стандарт Bluetooth 2.1. Произошло это уже в бытность нашего проекта, о чем мы даже писали соответствующую . Нововведений было сделано незначительно. Среди них - еще большее снижение энергопотребления, ускоренное спаривание, лучшая помехозащищенность и другие. До сих пор поддержкой этой версии пока озаботились не многие. Так современные ноутбуки (для которых скорость передачи данных куда чаще имеет большее значение, чем для мобильных телефонов) до сих пор оснащаются контроллерами Bluetooth 2.0 + EDR.

    Bluetooth 3.0

    Конечно, развитие Bluetooth не остановилось. Хотя сегодня есть довольно много альтернатив этому стандарту, о которых речь пойдет далее, уже сейчас ведется разработка стандарта Bluetooth 3.0, известного под кодовым именем "Seattle". Что он будет еще быстрее, можно догадаться и так. Организация Bluetooth SIG хочет адаптировать UWB-технологию (о ней несколько ниже), способную обеспечить скорость до 480 Мбит/с (тут уже без лишней скромности можно говорить о нескольких сотнях "рядов зубов").

    Если эта концепция будет реализована, то Bluetooth станет серьезным конкурентом активно разрабатываемого и уже внедряемого стандарта Wireless USB, который, как ни странно, основан на той же спецификации UWB. Но об этом тоже потом.

    Конечно, помимо значительно возросшей пропускной способности добавятся и новые возможности. Так планируется внедрение поддержки специальных информационных точек, которые будут содержать какую-либо информацию (рекламную, данные о погоде, курсах акций, валют и т.д.), и с них можно будет читать ее. Также ожидается упрощение сопряжения устройств, благодаря автоматизированному управлению топологиями. Будут внедрена альтернатива MAC и PHY профилям при передачи данных, что позволит снизить энергопотребление при низком потоке данных, а также повысить скорость при необходимости передать большой объем информации.

    Теперь рассмотрим принцип работы Bluetooth. Данный стандарт работает не при помощи точек доступа подобно Wi-Fi - "точкой доступа" может выступить любое устройство, оснащенное соответствующим контроллером. Условно оно называется "мастером" и формирует вокруг себя "пикосеть" (piconet), в которую может войти до семи других устройств. Точнее семь устройств могут быть активны в данный момент времени, тогда как еще 255 штук могут находится в неактивном состоянии, которое меняется на противоположное при необходимости.

    Пикосети могут быть объединены между собой. Тогда несколько устройств будут выступать в роли моста для обмена данными. Но пока полноценная поддержка подобной функциональности не появилась. Впрочем, именно она и должна быть реализована в будущих версиях стандарта.

    В один момент времени может происходить обмен данными с одним устройством. Если потребуется отдать данные другому, то быстро происходит переключение. Возможна и параллельная передача, но используется она довольно редко. При этом в пикосети любое из подчиненных устройств при необходимости запросто возьмет на себя роль мастера.

    Обеспечить поддержку Bluetooth современным компьютерам призваны специальные USB-адаптеры. Многие современные ноутбуки среднего ценового диапазона (от $1000) как правило имеют встроенный контроллер. Контроллеры бывают трех классов:

      Class 3. Мощность 1 мВт. Радиус действия около 1 метра;

      Class 2. Мощность 2.5 мВт. Радиус действия около 10 метров;

      Class 1. Мощность 100 мВт. Радиус действия около 100 метров.

    Сегодня более всего распространены Class 1 и 2. Оно и не удивительно - несмотря на очень малое энергопотребление Class 3 область его применения крайне ограничена. Даже для гарнитуры он подходит очень плохо. Телефон совсем не обязательно держать в нагрудном кармане - он запросто может оказаться и в джинсах, где карман пришит чуть выше колена, либо вообще на столе, а хозяин будет наблюдаться в радиусе 5-7 метров от аппарата.

    Зато Class 1 и 2 продаются довольно активно. Если вы выбираете себе внешний USB-адаптер Bluetooth, то лучше позаботиться о его дальнобойности. Ведь даже с адаптером Class 1 более слабое устройство Class 2 сможет работать на большем расстоянии.

    Ну и немного об области применения. Как уже стало ясно, это прежде всего мобильные "прибамбасы": обмен данными между сотовыми телефонами (карманными компьютерами, сотовыми и ноутбуком и т.д.), подключение беспроводной гарнитуры для разговора. В последнее время Bluetooth стал активно применяться в компьютерных мышках и клавиатурах. Множество GPS-навигаторов "говорят" при помощи "синих зубов". Даже джойстики современных приставок Nintendo Wii и PlayStation 3 работают через Bluetooth.

    Тем не менее, далеко не всем устройствам нужна большая скорость передачи данных, а также большой радиус действия. Это явно продемонстрировала Apple в своем коммуникаторе-телефоне . Кто не в курсе, сообщаем, что его Bluetooth-контроллер может работать только с гарнитурой. Обмен данными ему недоступен.

    И действительно, зачем сотовому телефону (особенно начального уровня) возможность передачи большего объема информации? "Зубы" в них чаще всего используются для гарнитуры. А в этом случае нужен стабильный поток данных, нормально передаваемый на расстояние 5-10 метров с фиксированной скоростью, потребляющий минимум энергии. Именно это и побудило некоторые компании к созданию ответвленных стандартов.

    Wibree

    В середине июня 2007 года компания Nokia выступила с официальным пресс-релизом, которым было сообщено о ведении разработки стандарта . Wibree основан на технологии Bluetooth и призван дополнить ее, но не конкурировать. Самое главное его отличие от "оригинала" - значительно более низкое энергопотребление. Предполагается, что модули Wibree будут применяться в устройствах вроде биометрических датчиков, отслеживающих параметры жизнедеятельности человека, в беспроводную гарнитуру, клавиатуры, различные устройства дистанционного управления. Так что не удивляйтесь, если скоро рядом стоящий с вами в автобусе человек вдруг нажмет что-то в районе своего пупка и начнет говорить сам с собой.

    Работать Wibree будет в том же диапазоне, что и Bluetooth: 2.4 ГГц. Максимальная пропускная способность - до 1 Мбит/с. Радиус действия - 5-10 метров. В целом напоминает Bluetooth 1.2 Class 2 с ультранизким энергопотреблением.

    Хотя Wibree и основана на "синих зубах", все равно полной обратной совместимости не будет. Хотя ничто не мешает встроить ее в современные контроллеры Bluetooth - придется лишь немного доработать их. Но в любом случае все современные устройства не смогут вести обмен данными с вашей теннисной ракеткой, биодатчиком, прилепленным на тело или умным чайником, сообщающим о кипении не банальным свистом, а через ваш мобильный телефон посредством SMS.

    Но Wibree - это не единственный "low-power" стандарт. Существуют его аналоги, причем уже готовые, а местами даже не первого поколения. Финальные спецификации Wibree будут готовы в первой половине этого года, тогда как ZigBee уже существует в своей третьей версии.

    ZigBee

    ZigBee - еще один "ultra mega super maxi low-power" беспроводный стандарт с двумя "ee" на конце. Впервые он был задуман еще в далеком 1998 году, когда стало понятно, что Wi-Fi и Bluetooth подходят далеко не для всех случаев. Как и последний ZigBee создан для сопряжения устройств, но принцип его работы несколько отличается.

    Существует три вида ZigBee-устройств: координатор (ZigBee Coordinator - ZC), роутер (ZigBee Router - ZR) и "конечное устройство" (ZigBee End Device - ZED). Первый является главным в созданной беспроводной сети и может служить как роутером, так и мостом для обмена данным и с другими сетями. Роутер принимает данные от конечного устройства, а также может вести обмен информацией с другими роутерами и координаторами. Само конечное устройство способно только передавать данные.

    Таким образом ZigBee исключается как технология для обмена данными между цифровыми девайсами вроде плееров, фотоаппаратов, принтеров, КПК, ноутбуков и так далее. Зато применение этой технологии на производстве или в качестве охранной системы куда более актуально. Именно в этом направлении она и используется.

    На официальной странице проекта можно прочитать успешные проекты, связанные с автоматизацией производства (на заводе, при строительстве и др.), обеспечением безопасности помещения, автоматизацией современных зданий, объединением бытовых устройств в единую сеть и так далее. Bluetooth (и Wibree) более ориентированы на передачу "компьютерных" данных, тогда как по каналам ZigBee циркулирует преимущественно биты и байты с техническими сведениями от датчиков, пультов ДУ и т.п.

    Теперь немного о принципах построения ZigBee-сетей. Их два: без и с постоянным опросом ZED. В первом случае роутер или координатор находятся в режиме постоянного ожидания сигнала от конечного устройства (ZED). Хорошим примером такой сети может послужить работа беспроводного выключателя света. В качестве роутера выступает лампа, как правило оснащенная постоянным источником питания. ZED - это сам выключатель. Он находится в неактивном состоянии. Но как только вы нажмете на него, то он активизируется и отправит сигнал роутеру. Последний среагирует и даст команду на включение света. При этом энергии не пересылку данных будет затрачено самый минимум. Батарейки в выключателе хватит на год, а то и несколько лет. Конечно, если постоянно не устраивать "светомузыку".

    Второй вариант предполагает что роутер через равные интервалы времени будет опрашивать ZED. При этом он будет потреблять меньше энергии, поэтому нет нужды в постоянном источнике питания. Зато больше электричества потребуется для ZED. Полагаем, такой тип сети больше подходит для охранных систем, либо для различных датчиков. Делая опрос ZED можно проверить состояние на том или ином объекте, и при необходимости быстро отреагировать на изменение ситуации.

    Устройства ZigBee должны соответствовать стандарту IEEE 802.15.4-2003, который позволяет функционировать на частотах 2.4 ГГц, 915 и 868 МГц. В первом случае для передачи данных может использоваться до 16 каналов (на частотах 2405-2480 МГц с шагом 5 МГц). В этом случае скорость обмена информацией может достигать 250 Кбит/с. На частотах 915 и 868 МГц скорость равна 40 и 20 Кбит/с соответственно. Выбор именно этих трех частотных диапазонов продиктован как технологическими причинами, так и географическими. Так частота 868 МГц разрешена в Европе, 915 в Австралии и США, а 2.4 ГГц почти везде. Стоит заметить, что ZigBee поддерживает 128-битное шифрование.

    Итак, ZigBee - отличный пример реализации промышленного беспроводного стандарта, расширяющий и упрощающий нашу жизнь и работу. Bluetooth и Wibree действительно плохо подошли бы для этих целей, поэтому и была создана такая специализированная технология. Сегодня она поддерживается большим числом производителей. Вступить в ZigBee Alliance и начать использовать спецификации стандарта в коммерческих целях стоит всего $3500 в год. А если не в коммерческих, то вообще бесплатно.

    Существует еще несколько подобных разработок, например, MiWi, JenNet, EnOcean, Z-Wave. Они конкурируют как с ZigBee, так и с Wibree и их реализация в некоторых моментах совпадает. Останавливаться мы на них не станем - они хоть и цифровые, все равно используются для обмена данными между относительно простыми и узкоспециализированными устройствами. А нас в данном материале интересует прежде всего то, что обеспечивает взаимодействие компьютеров, сотовых телефонов, КПК и мультимедийной бытовой техники. ZigBee был описан лишь как пример альтернативного использования беспроводных сетей. Тем временем мы переходим к следующему подклассу стандартов, работающих на относительно малом радиусе, но уже с огромными в сравнении с Bluetooth скоростями.

    UWB

    Объемы передаваемой информации растут с каждой секундой. Так 7-8 лет назад формат MP3 казался панацеей для повсеместного распространения музыки через Интернет. В Сети появились тысячи трэков сжатых со средним битрейтом 128 Кбит/с, что делало средний размер одной композиции равным 3-6 Мбайтам. В то время сайты оптимизировались как в плане кода, так и графики, а о загрузке фильмов никто даже не думал.

    Давайте посмотрим что происходит теперь. Песни все также распространяются в MP3, только средний битрейт подрос до 160-320 Кбит/с. Причем раньше если мы могли искать вариант песни размером поменьше, то сейчас наоборот - ищем покачественнее, особенно если трэк очень нравится. Фильмы в формате MPEG4, так отлично подошедшего для ужатия одного DVD на один CD, теперь часто занимают 1400 Мбайт вместо более привычных 700 Мбайт. Но современные скорости позволяют из P2P-сети (например, BitTorrent) за несколько часов скачать полный DVD, которые постепенно уже начинают заменяться HDTV. В последнем случае речь идет о десятках гигабайтах.

    Современные жесткие диски запросто передают данные со скоростью до 100 Мбайт/с, а емкость оптических дисков возросла до 50 Гбайт, а через года два-три может удвоится. Как думаете, достаточно ли современной скорости Bluetooth для таких объемов? Сколько потребуется времени, чтобы перекачать 20 Гбайт через канал 3 Мбит/с? Даже достаточно быстрый стандарт Wi-Fi здесь плохо подходит. Он создан скорее для беспроводного Интернета, нежели для просмотра HDTV-фильма с соседнего компьютера. В данном случае нужна технология, способная обеспечить высокую скорость передачи данных, причем не обязательно на большом расстоянии. Именно это и есть главная концепция UWB.

    UWB - это аббревиатура Ultra-WideBand, что в нашем вольном переводе звучит как "афигенно быстрая связь". Шутка? Почти. Связь действительно получается очень быстрой, что обеспечивается благодаря широкополосной (wideband) передачи данных. Как было отмечено немного выше, это не совсем технология, а скорее концепция. Это как бы основа для различных стандартов, два из которых описываются далее.

    В самой основе UWB лежит пока еще черновой стандарт IEEE 802.15.4a. В отличие от обычной радио-передачи UWB передает данные при помощи волн, генерируемых в определенные моменты времени. При этом используется широкий частотный диапазон, вызывая таким образом модуляцию по времени.

    Для передачи данных могут использоваться частоты от 500 МГц и выше. Но 14 февраля 2002 года федеральной комиссией по коммуникациям (FCC - Federal Communications Commission) США для UWB был рекомендован диапазон 3.1-10.6 ГГц. При этом предполагается, что передача данных будет вестись в пределах одного помещения, хотя с ростом мощности передатчика и приемника будет расти и радиус действия сети. Впрочем, это запрещено.

    Теперь о назначении. Не сложно догадаться, что UWB будет применяться для передачи больших объемов данных между цифровыми устройствами. В число последних прежде всего можно включить компьютеры, сотовые телефоны (особенно топовые модели с большим объемом памяти), принтеры, цифровые фото- и видеокамеры, аудио и видео плееры и так далее. Максимальная скорость UWB нам неизвестна, но она может достигать десятков гигабит. Весьма внушительное значение не только по современным меркам, но и по меркам ближайшего будущего. Так что запас есть.

    Теперь непосредственно о стандартах, основанных на UWB. Прежде всего это новое поколение Bluetooth. Пока точно не ясно, будет ли использована эта концепция в Bluetooth 3.0 или нет, но в планах что-то подобное определенно есть. Ходят слухи о возрастании скорости до 480 Мбит/с. Мы полагаем, что они не далеки от истины, только вот доступны подобные возможности будут в основном для передачи больших объемов данных и после полусотни предупреждений о высоком энергопотреблении. Все же такие скорости станут доступны не за просто так.

    Но когда свет увидят спецификации Bluetooth 3.0 пока неизвестно. Зато уже сейчас готовы к массовому производству контроллеры Wireless USB, а совсем недавно мы сообщили о выпуске первой версии стандарта . Остановимся на этих двух технологиях более подробно.

    Wireless USB

    Стандарт Wireless USB (сокращенно WUSB) не является совсем новым. Впервые о нем заговорила компания Intel на своей весенней сессии IDF в 2004 году. Самих устройств тогда не представили, как и не анонсировали доступность спецификаций. Просто объявили о том, что вот такая технология существует. Существует так существует, подумали услышавшие это люди, и продолжили жить дальше как жили до этого.

    В 2005 году во время осенней сессии IDF Intel уже показала первые прототипы. Прототип, надо сказать, внушал . Правда, не ясно что именно: уважение или изумление. Это была массивная PCI-плата, на которую был интегрирован PCMCIA-контроллер, а за креплением торчала антенна. Странное решение, которое в перспективе должно было быть интегрировано на материнские платы и в ноутбуки. Впрочем, как оказалось, это был скорее первый рабочий образец, нежели прототип серии.

    На сегодняшний день уже вроде как доступны нормальные модули Wireless USB, так и первые устройства с его поддержкой. Что это за устройства? Да собственно точно такие же, которые мы подключаем через обычный разъем USB: принтеры, сканеры, фотоаппараты, мышки, внешние жесткие диски, КПК и т.д. WUSB позволяет перенести возможности столь популярной проводной последовательной шины на беспроводные рельсы.

    Давайте разберемся как это работает. Начнем с топологии. За обмен данными между устройствами отвечает специальный хост-контроллер. Каждому устройству, находящемуся в радиусе действия, выделяется отдельный канал связи. Последнее особенно важно, если приходится передавать данные с большой скоростью - разделение канала подобно Wi-Fi может привести к печальным последствиям (например, к порче оптического диска при записи, если данные будут поступать слишком медленно). Один "нормальный" WUSB-хост поддерживает подключение до 127 устройств.

    Существуют также не совсем "нормальные" хост-контроллеры - это непосредственно сами устройства. Они обладают ограниченным перечнем возможностей, однако также могут принимать и передавать данные от других источников. Таким образом получается некое подобие сотовой сети, когда информация от довольно удаленного источника может пройти через несколько устройств, после чего попадет на главный хост, который передаст ее непосредственно на компьютер, сделавший запрос.

    Как это можно использовать в рамках одной квартиры или дома? Где-нибудь не очень далеко от главного компьютера вы устанавливаете WUSB-контроллер, либо подключаете его непосредственно к материнской плате. После в пределах комнаты можете пользоваться любыми устройствами, способными работать как с Wireless USB напрямую, так и через хаб. Да, именно хаб - хост-контроллер может быть оснащен самыми обычными портами USB к которым можно подключаться самые заурядные девайсы вроде мышки, клавиатуры, принтера.

    При этом для связи с другими комнатами могут быть использованы как другие хост-контроллеры или Wireless USB устройства сами, так и более удобные Wi-Fi точки доступа, а то и обычные LAN-коммутаторы.

    Огромное достоинство Wireless USB - это полная совместимость с оригинальным проводным стандартом. Здесь уместна аналогия с LAN и WLAN: точка доступа Wi-Fi подключается к проводной локальной сети при помощи самой обычной витой пары, после чего все устройства, находящиеся в радиусе ее действия, могут спокойно пользоваться ресурсами всей сети, а не только беспроводной.

    Раз уж WUSB обеспечивает совместимость с USB, то этот беспроводный стандарт должен работать не менее быстро. Собственно, так оно и есть: в радиусе 3 метров скорость составит 480 Мбит/с, а в радиусе 10 метров - 110 Мбит/с. В последующих версиях стандарта обещают поднять скорость до 1 Гбит/с. Для передачи данных используются частоты из диапазона 3.1-10.6 ГГц, что явно указывает на происхождение данного стандарта от UWB.

    Что касается энергопотребления, то оно должно быть не очень значительным. Так современные мобильные телефоны и КПК с включенным WUSB-контроллером будут работать примерно столько, сколько и раньше (конечно, если постоянно не перекачивать гигабайты информации), а пульты ДУ, основанные на WUSB, смогут продержаться на одном заряде несколько месяцев. Хотя в последнем случае куда актуальнее воспользоваться технологиями вроде Wibree или ZigBee - экономичнее выходит, да и радиус действия побольше.

    Имеет ли Wireless USB перспективы в будущем? Судя по данным агенства iSuppli имеет. Так в 2007 году рынок совместимых устройств составил всего $15 млн., но уже к 2011 он возрастет до $2.6 млрд. Число проданных девайсов увеличится с 1 млн. до 500 млн. в том же 2011. Что же, понадеемся, что все так и будет.

    WirelessHD

    Объединять без проводов компьютеры и периферийные устройства, работающие с ними, далеко не предел для современных технологий. Да и стерпеть короткий USB-кабель от принтера к системному блоку большого труда не составит. Но если у вас установлена дорогая система домашнего кинотеатра, от которой и к которой тянется туча проводов, то может возникнуть мысль избавить от них и ее. Все же упрятать подобные "прелести жизни" не всегда так просто, даже если их и немного.

    Если же учесть, что современные домашние кинотеатры представляют собой своеобразные полукомпьютеры, то оснастить их поддержкой беспроводных коммуникаций не так сложно. Стоит ли удивляться, что стали появляться приставки подобно и Sony LocationFree способные транслировать видео и аудио с компьютера на ЖК-телевизоры и акустику? Тем не менее, они работают через Wi-Fi, а пропускной способности сети такого типа будет не всегда достаточно, особенно если передавать видео в формате 1080i/p.

    Так и был придуман стандарт WirelessHD. Совсем недавно мы о принятии первой версии его спецификаций. Это специальный беспроводный стандарт, призванный объединить бытовую электронику. Его частотный диапазон выходит далеко за рамки UWB и в функционирует на частоте 60 ГГц (±5 ГГц в зависимости от страны). Его радиус действия невелик - всего 10 метров. Этого вполне достаточно, чтобы настроить взаимодействие устройств домашнего кинотеатра.

    Использование таких частот необходимо для достижения больших скоростей передачи данных. Речь идет о 2-5 Гбит/с в первых версиях стандарта. Но теоретический предел составляет 20-25 Гбит/с. Для сравнения - пик для HDMI 1.3 равен 10.2 Гбит/с. Так что запас на будущее есть, причем очень неплохой.

    Во главе сети WirelessHD находится координатор - устройство, управляющее передачей аудио и видео потоков, а также задающее их приоритеты. Все остальные устройства - это станции, которые могут быть как источником, так и приемником данных, так же как и сам координатор.

    Будет ли обеспечена поддержка WirelessHD для компьютера пока неизвестно, но мы полагаем, что будет. Это точно так же как выходы HDMI есть на многих современных видеокартах и ноутбуках. Таким образом видео и аудио можно будет воспроизводить с обычного компьютера, что позволит значительно расширить функциональность. Ведь бытовые плееры не всегда поддерживают самые последние кодеки, не говоря уже о форматах дисков. Надо сказать, что реализация данной технологии действительно очень полезна и актуальна. Она куда удобнее того, что используется сейчас. А сейчас, как мы уже говорили, используется Wi-Fi. К описанию этого стандарта как раз и переходим.

    Wi-Fi

    Из всех рассматриваемых в этой статье стандартов Wi-Fi на пару с Bluetooth является самым известным и распространенным. Свою популярность Wi-Fi обрел благодаря ноутбукам. Сегодня даже самые дешевые модели оснащаются беспроводной сетевой картой. Но, как всегда, данная технология стала популярной совсем не сразу как была представлена.

    Первые работы над Wi-Fi начались еще в 80-х годах прошлого века. Однако финальные спецификации были готовы лишь в 1997 году. Организация IEEE присвоила им маркировку 802.11 (а точнее 802.11-1997). В 1999 году они были приняты в качестве стандарта. Новую и перспективную технологию сразу же подхватила Apple. В качестве опции к новым тогда ноутбукам iBook стала предлагаться сетевая карта Wi-Fi. Но Apple даже сейчас не занимает доминирующего положения на рынке, а тогда она только начала выходить из затяжного кризиса. Так что "фруктовой компании" не удалось пройтись по планете в качестве первооткрывателя, сея зерна Wi-Fi повсюду. Эта честь была уготована Intel.

    Полагаем, многие слышали о мобильной платформе Intel Centrino. Ее первое поколение было представлено в 2003 году. Ноутбук, чтобы получить новый и модный логотип, должен быть основан на процессоре Intel (сейчас Core Duo или Core 2 Duo, а тогда на Pentium M), чипсете Intel, а также внутри него должна быть установлена Wi-Fi сетевая карта производства Intel. Именно это и послужило толчком к повсеместному распространению беспроводных локальных сетей.

    Впрочем, утверждать что это заслуга исключительно одной Intel нельзя. Просто рынок уже был готов к такой технологии. Инициатива Apple в свое время оказалась слишком новаторской, что ее приняли далеко не все. Четыре года спустя оборудование для Wi-Fi было также достаточно дорого, но уже не на столько. Да и ассортимент значительно расширился. Intel же просто предоставила всем наиболее удобную форму для принятия очередной технологии, призванной приблизить светлое будущее.

    Теперь давайте разберемся каким образом Wi-Fi работает. Как уже стало понятно, в компьютере должна быть установлена соответствующая сетевая карта. Это может быть как PCI (или PCI Express) карта расширения, так и относительно небольшой USB-брелок. Для ноутбуков существуют версии в формате PCMCIA (PC Card) и ExpressCard.

    При помощи беспроводной сетевой карты можно установить соединение с другой такой же. То есть не составит труда наладить сетевое соединение между двумя ноутбуками или между ноутбуком и настольным ПК. Только вот несмотря на кажущуюся свободу подключить к ним еще одного участника не удастся. Третий, как говорится, лишний. Чтобы обойти это ограничение приходится прибегать к точкам доступа.

    Точка доступа в Wi-Fi - это аналог роутера обычной локальной сети. Только подключения к ней осуществляются через радиопередачу, а не по проводам. Теоретически их число неограничено, хотя для большей скорости и стабильности лучше распределять подключенные компьютеры между несколькими точками. В данном случае уместна аналогия с сотовой связью. Одна базовая станция может обслужить несколько абонентов одновременно, но если их очень много она перегружается и кто-то может не дозвониться, а у кого-то прервется связь.

    Вообще принцип разворачивания Wi-Fi довольно схож с сотовой сетью. В роли базовых станций выступают точки доступа. Если их настроить соответствующим образом, то они будут поддерживать связь друг с другом, делая возможным обмен информацией между компьютерами, подключенными к любой из них. Если такой настройки не делать, то программа управления картой Wi-Fi предоставит возможность подключиться к одной из доступных сетей.

    Но чтобы подключиться к Wi-Fi сети иногда необходимо знать пароль, либо ключ доступа к ней. Все-таки через сеть могут передаваться весьма важные данные, вроде паролей доступа к денежным учетными записям различных сервисов, а радиопередачу перехватить куда проще, чем обычный обмен информацией по проводам. Для этого было внедрены несколько стандартов шифрования.

    Первый из них, WEP (Wired Equivalent Privacy), принятый в 2001 году, продержался совсем недолго. Он считается довольно слабой защитой от несанкционированного проникновения. Сегодня запросто можно найти программу, способную за короткое время взломать ключ, после чего станет возможно отслеживать все пакеты в сети.

    В середине 2003 года на смену WEP был предложен новый алгоритм шифрования WPA (Wi-Fi Protected Access). Он базировался на черновом стандарте 802.11i. Позже последний был принят в июне 2004 года. При этом в качестве основного способа защиты он предлагал более совершенный алгоритм WPA2. Его взломать уже куда сложнее, поэтому настоятельно рекомендуется его использование. Конечно, прогресс не стоит на месте и уже предложены еще более совершенные возможности защиты, которые в будущем будут приняты в качестве стандартов. Один из таких - 802.11w.

    Немного о необходимости защиты данных. Сегодня довольно часто точка доступа устанавливается в квартире для объединения в сеть всех локальных компьютеров (да и КПК с сотовыми телефонами, если они поддерживают Wi-Fi). При этом если вы обмениваетесь только фильмами, музыкой и тому подобной информацией, то большой ценности ваша сеть не представляет. Тем не менее, ничто не помешает соседу за стенкой подключиться своим ноутбуком к вашей сети, особенно если она не защищена. К тому же в подобной сети нет нужды боятся всех и вся, поэтому вы можете открыть в полный свободный доступ те или иные разделы жестких дисков. Конечно, ничего кроме последней комедии и боевика там может не лежать, но всегда найдется желающие напакостить. Все равно не приятно, если только что скопированный фильм будет удален до просмотра.

    А вот другая ситуация. У вас дома Интернет подключен через ADSL-модем. Если у вас несколько компьютеров, либо один ноутбук для удобства модем может быть оснащен Wi-Fi точкой доступа. Согласитесь, удобно сидеть из любой точки квартиры в Сети. Если же должным образом Wi-Fi не защитить, то к вашему Интернету может получить доступ кто угодно. Теоретически даже с улицы можно, присев под окном на лавочке. Хорошо если у вас нелимитированный канал - вы просто почувствуете снижение скорости. А если трафик? Можно влететь на всю сумму, что лежит на счету. Так что защита локальной беспроводной сети имеет огромное значение. Причем не обязательно ограничиваться только WPA(2)-шифрованием. Если компьютеров всегда статическое число, каждому можно создать отдельный аккаунт, а заодно сделать идентификацию по MAC-адресу сетевой карты.

    Ну и о стандартах Wi-Fi. Всего нам удалось узнать о 28 стандартах. Но только шесть из них описывают непосредственно скорость обмена данными, дальность действия и рабочую частоту:

    Самая первая версия Wi-Fi мягко говоря не впечатляет. Хоть она и была принята раньше Bluetooth, она даже не дотягивает до современного Bluetooth 2.0+EDR. А ведь изначально стандарт разрабатывался как беспроводный аналог проводных локальных сетей, где могут передаваться огромные объем данных. 802.11a/b предоставили куда лучшие возможности, особенно 802.11a. Но частота 5.0 ГГц не везде разрешена, поэтому он и не получил широкого распространения. Именно поэтому и был разработан 802.11g, обеспечивающий аналогичную скорость, а также и способность работы на частоте 2.4 ГГц.

    С прошлого года на рынке стали появляться точки доступа и сетевые карты с поддержкой 802.11n. Как видно по таблице, он работает в несколько раз быстрее 802.11g. Тем не менее, до сих пор этот стандарт обозначен как черновой. Судя по имеющимся данным он будет принят не ранее чем в следующем году. Но вероятнее всего все современные устройства на основе 802.11n draft будут совместимы с финальной спецификацией после обновления прошивки.

    Стандарт 802.11y представляет собой аналог 802.11g способный работать на значительно большем расстоянии (до 5 км на открытом пространстве). Именно с этой целью он и был создан. Чтобы достигнуть таких показателей пришлось использовать более высокочастотные волны из диапазона 3.7 ГГц.

    Теперь перечислим все остальные стандарта из семейства 802.11. Под него были зарезервированы все символы латинского алфавита:

    Как видим, расти Wi-Fi еще есть куда. Не исключено, что скорость данной технологии в будущем еще больше увеличится. Кроме того сегодня не малое внимание уделяется внедрению поддержки этого стандарта во все устройства. Уже не редки коммуникаторы и мобильные телефоны с Wi-Fi. Оно и не удивительно, точки доступа есть во многих современных городах. А Интернет через них может быть куда более быстрым, чем через сети WWAN (EDGE/GPRS, UMTS/WCDMA, HSDPA). Впрочем, именно для Интернета придумана еще одна весьма перспективная технология: WiMAX.

    WiMAX

    Завершает наш список стандарт WiMAX. Его главное отличие от всех предыдущих заключается в радиусе действия. В зависимости от используемых передатчиков сигнал может приниматься на расстоянии до 50 км от источника. Тут уже идет речь об аналоге сотовой связи, а не просто об "еще одной беспроводной локальной сети".

    WiMAX предназначен не совсем для разворачивания сети в рамках квартиры, дома или района, хотя может быть использован и для этого. Одна из главных его целей - обеспечить высокоскоростной доступ к сети Интернет как особо отдаленных населенных пунктов, так и отдельных районов города.

    Это не совсем альтернатива сотовой связи, поскольку предоставляет несколько иные возможности и ориентирована больше не компьютеры. Скорее это промежуточный вариант между стандартами сотовой связи последних поколений (UMTS, HSDPA) и беспроводными локальными сетями. WiMAX обеспечивает радиус больший, чем Wi-Fi, но средняя скорость передачи данных будет ниже. В то же время сотовая связь развернута на куда большее расстояние и более помехоустойчива, зато скорость передачи данных в ней ниже.

    Тем не менее, WiMAX называют конкурентом сотовым сетям четвертого поколения. Мы склонны полагать, что это не далеко от истины, но лишь отчасти. Все же WiMAX рассчитан прежде всего на компьютеры, а только потом на коммуникаторы и мобильные телефоны. Но это мы начинаем углубляться в особенности работы этого стандарта. Для начала немного истории.

    За разработку спецификаций WiMAX отвечает организация WiMAX Forum, сформированная в 2001 году. Само название WiMAX является аббревиатурой от Worldwide Interoperability for Microwave Access или "Всемирное объединение сетей для микроволнового доступа". В декабря 2001 года были представлены финальные спецификации WiMAX, ратифицированные как стандарт 802.16-2001. В 2004 году был принят стандарт 802.16-2004 известный также как 802.16d, описывающий возможность организации WiMAX внутри помещений. Наконец самая последняя версия стандарта была принята в 2005 году и получила индекс 802.16-2005, но также неофициально именуется как 802.16e.

    Теперь о принципах работы. Внутри WiMAX реализован протокол IP, позволяющий ему просто интегрироваться с современными сетями. Так данная технология может стать отличным дополнением к Wi-Fi. Но в отличие от последней WiMAX обеспечивает более устойчивое соединение. Например, соединение с Wi-Fi точкой доступа при значительном удалении может быть неустойчивым, если поблизости окажется другая точка. В случае WiMAX одному подключению выделяется отдельный слот, который более никто не может использовать. И при вашем перемещении за его активность будут отвечать различные базовые станции WiMAX.

    Да, WiMAX также строится на основе базовых станций. В зависимости от задач они могут быть достаточно небольшими (например, для помещений), так и устанавливаться на отдельные вышки, чтобы передавать данные на большое расстояние. Изначально для WiMAX был отведен диапазон частот 10-66 ГГц, но позже добавилась поддержка более низких частот 2-11 ГГц.

    Зачем всем это надо? Диапазон 10-66 ГГц хорош для постоянной передачи на больших скоростях. Так пиковая скорость передачи может составить 120 Мбит/с и это на расстоянии десятков километров. Отличный вариант для подключения небольшого населенного пункта. Но поскольку сверхвысокие частоты требуют прямой видимости для обычного города они подходят не так хорошо. Так с ноутбука или мобильного телефона подключиться к сети будет несколько проблематично. Для них куда лучше подходит диапазон 2-11 ГГц.

    В связи с этим выделяют четыре режима работы WiMAX:

      Fixed WiMAX. Использует высокочастотный диапазон 10-66 ГГц, предназначенный для объединения удаленных объектов, находящихся в пределах прямой видимости;

      Nomadic WiMAX. По сути тот же Fixed WiMAX, но с поддержкой сессий. Так подключившись к одной вышке создается сессия. Если вы выйдете за пределы ее досягаемости, но окажетесь в зоне действия другой, то ваша сессия может быть передана. При этом соединение никак не пострадает;

      Portable WiMAX. Позволяет автоматически переключать сессии от одной базовой станции к другой. Использует более низкий частотный диапазон, позволяющий перемещаться со скоростью до 40 км/ч;

      Mobile WiMAX. Данная версия стандарта была принята самой последней в качестве дополнения 802.16-2005. Позволяет принимать сигнал на скорости до 120 км/ч. Отлично подходит для мобильных устройств.

    Как видите, охвачены все категории: от спальных районов больших городов, а также их офисов, до удаленных населенных пунктов и перемещающихся между ними людьми с ноутбуками, КПК, мобильными телефонами. Если он получит широкое распространение, то действительно сможет стать серьезным конкурентом разрабатываемым сегодня сотовым сетям четвертого поколения. Конечно, последние пока что обещают скорости вплоть до нескольких гигабит, но вторая версия стандартов WiMAX также поднимет планку до 100 Мбит/с в случае мобильного режима и до 1 Гбит/с в фиксированном режиме.

    Впрочем, WiMAX толком еще нигде не внедрился. Развернуты десятки пробных сетей по всему миру, включая Россию и Украину. Причем в своем большинстве пока это Fixed WiMAX. Впрочем, Южная Корея в тестовом режиме развернула сеть WiBro, являющейся по сути переименованным Mobile WiMAX. Она обеспечивает соединение на скорости до 30-50 Мбит/с в радиусе до 5 км. Скорость движения при этом может составлять до 120 км/ч. Для сравнения - обычная сотовая связь работает на скоростях до 250 км/ч.

    Также пока еще в продаже мало устройств как для разворачивания, так и для использования WiMAX. Последние должны быть представлены с пятым поколением мобильной платформы Intel Centrino в середине 2008 года. Надеемся, что это сможет послужить похожим толчком для рынка, каким в свое время стала первая Intel Centrino для Wi-Fi.

    Завершаемся

    Итого что мы видим? Беспроводные сети опоясывают своими невидимыми "нитями" весь мир. Им не мешают ни границы, не суша не вода, ни строения, а еще лучше было бы побольше энергии и побольше открытого пространства. И чем больше всего этого будет, тем ближе наше с вами светлое будущее. Будущее, где все будет объединено в единую сеть между не только всеми возможными телефонами, компьютерами, кофеварками, чайниками, плитами, холодильниками и утюгами, но и всеми планетами солнечной системы, галактики, а также маленькой планетой K-PAX.

    Если серьезно, то будущие перспективы очевидны. Миниатюрные устройства постепенно обретут возможность обмена данными при помощи стандарта Bluetooth (или его схожей замены). Расширится диапазон беспроводной гарнитуры при содействии Wibree, а включать свет в комнате с пульта позволит ZigBee.

    Объединять периферию в рамках комнаты призван Wireless USB. Кстати, не так давно ему в помощь был призван . Скорости он обеспечивает такие же, только вот расстояние от источника может быть не более нескольких сантиметров. Свободы размещения девайсов не много, зато проводов не надо. Для домашнего кинотеатра предназначен WirelessHD. Интересная и перспективная технология, которая может со временем вытеснить современное проводное соединение.

    На уровне квартиры или даже нескольких квартир, либо для объединения проводных локальных сетей между домами будет использоваться Wi-Fi. Он для этого создан и это удобнее. Куда дешевле установить маленькую точку доступа за $50-70 в квартире или в кафе (для посетителей), чем дорогостоящее WiMAX-оборудование. А ведь его еще и поставить и настроить придется правильно.

    Что касается WiMAX, то этот стандарт хорошо подходит прежде всего для интернет-провайдеров. С его помощью они смогут довести луч света всемирной паутины в самые темные захолустья нашей планеты. Впрочем, пока еще неизвестно что нам предложит четвертое поколение сотовой связи. В любом случае выиграем мы - обычные обыватели маленькой планеты Земля, уже опоясанной проводами, от которых сейчас все стремительно избавляются.

    В материале использовалась информация со следующих ресурсов:

    В нашей стране большую распространенность получили районные Ethernet сети , затягивающие в квартиру витую пару. Когда дома всего один компьютер, вопросов с подключением кабеля обычно не возникает.Но когда появляется желание лазить в Интернет с компьютера, лэптопа и КПК с возможностью беспроводного подключения , задумываешься о том, как все это грамотно осуществить. Разделить один Интернет -канал на всех домочадцев нам помогают многофункциональные роутеры.

    Wi-Fi технологии становятся все более совершенными и качество их соединения и безопасность стремительно приближается к возможностям обычного, широко используемого, проводного соединения.
    Беспроводные локальные сети (WLAN – wireless LAN ) могут использоваться в офисе для подключения мобильных сотрудников (ноутбуки, носимые терминалы) в местах скопления пользователей - аэропортах, бизнес-центрах, гостиницах и т. д.
    Мобильный Интернет и мобильные локальные сети открывают корпоративным и домашним пользователям новые сферы применения карманных ПК, ноутбуков. Одновременно с этим постоянно снижаются цены на беспроводное оборудование Wi-F i и расширяется его ассортимент. Wi-Fi также подходит для людей, которым по долгу необходимо перемещаться по помещению, к примеру, на складе или в магазине. В этом случае для учета (отгрузки, приема и т. п.) товаров используются носимые терминалы, которые постоянно соединены с корпоративной сетью по протоколу Wi-Fi , и все изменения сразу отражаются в центральной базе данных. WLAN применим и в организации временных сетей, когда долго и нерентабельно прокладывать провода, а потом их демонтировать.
    Еще один вариант использования – в исторических постройках, где прокладка проводов невозможна или запрещена. Иногда не хочется портить внешний вид помещения проводами или коробами для их прокладки. Кроме того, Wi-Fi -протокол подходит и для бытового применения, где тем более неудобно прогладывать провода.
    Что касается мобильных компьютеров , 12 марта 2006 года корпорация Intel представила технологию Intel Centrino для мобильных ПК - основу для мобильных компьютеров нового поколения со встроенными функциями беспроводной связи, которые предоставят корпоративным и домашним пользователям большую свободу и новые возможности подключения к компьютерным сетям. Технология, которую представляет торговая марка Intel Centrino для мобильных ПК, включает в себя процессор Intel Pentium M , семейство наборов микросхем Intel 855 и сетевой интерфейс Intel Pro/Wireless 2100 . Все компоненты технологии оптимизированы, проверены и протестированы для совместной работы в мобильных системах.
    Сетевой интерфейс Intel PRO/Wireless 2100 разработан и проверен на полную совместимость с узлами доступа 802.11b, сертифицированными по стандарту Wi-Fi . Он оснащен мощными встроенными средствами безопасности для беспроводных локальных сетей, включая технологии 802.11x, WEP и VPN , с возможностью программного обновления до поддержки WPA .
    Потребность в создании дома персональной Wi-fi сети испытывает, наверное, любой обладатель ноутбука или КПК. Конечно, можно купить точку доступа и организовать беспроводный доступ через нее. Но куда удобнее иметь устройство всё в одном», ведь роутеры справляются с этой функцией ничуть не хуже точек доступа. Главное, на что стоит обращать внимание, это поддерживаемые стандарты Wi-fi . Ибо в последние несколько лет среди производителей появилась тенденция выпускать устройства с поддержкой еще не существующих стандартов. Безусловно, в этом есть определенная польза. Мы получаем большую производительность и дальнобойность wi-fi при использовании оборудования от одного производителя. Однако, поскольку каждый из них реализует новшества так, как ему больше нравится (стандарт ведь пока не принят), совместимости оборудования от разных производителей мы не наблюдаем.
    Обычно беспроводные сетевые технологии группируются в три типа, различающиеся по масштабу действия их радиосистем, но все они с успехом применяются в бизнесе.
    PAN (персональные сети) - короткодействующие, радиусом до 10 м сети, которые связывают ПК и другие устройства - КПК, мобильные телефоны, принтеры и т. п. С помощью таких сетей реализуется простая синхронизация данных, устраняются проблемы с обилием кабелей в офисах, реализуется простой обмен информацией в небольших рабочих группах. Наиболее перспективный стандарт для PAN - это Bluetooth .
    WLAN (беспроводные локальные сети) - радиус действия до 100 м. С их помощью реализуется беспроводной доступ к групповым ресурсам в здании, университетском кампусе и т. п. Обычно такие сети используются для продолжения проводных корпоративных локальных сетей. В небольших компаниях WLAN могут полностью заменить проводные соединения. Основной стандарт для WLAN - 802.11 .
    WWAN (беспроводные сети широкого действия) - беспроводная связь , которая обеспечивает мобильным пользователям доступ к их корпоративным сетям и Интернету . Пока здесь нет доминирующего стандарта, но наиболее активно внедряется технология GPRS - быстрее всего в Европе и с некоторым отставанием в США.
    На современном этапе развития сетевых технологий , технология беспроводных сетей Wi-Fi является наиболее удобной в условиях требующих мобильность, простоту установки и использования. Wi-Fi (от англ. wireless fidelity - беспроводная связь) - стандарт широкополосной беспроводной связи семейства 802.11 разработанный в 1997г. Как правило, технология Wi-Fi используется для организации беспроводных локальных компьютерных сетей , а также создания так называемых горячих точек высокоскоростного доступа в Интернет.
    Архитектура, компоненты сети и стандарты
    Стандарт RadioEthernet IEEE 802.11 - это стандарт организации беспроводных коммуникаций на ограниченной территории в режиме локальной сети , т.е. когда несколько абонентов имеют равноправный доступ к общему каналу передач.802.11 - первый промышленный стандарт для беспроводных локальных сете й (Wireless Local Area Networks), или WLAN . Стандарт был разработан Institute of Electrical and Electronics Engineers (IEEE), 802.11 может быть сравнен со стандартом 802.3 для обычных проводных Ethernet сетей.
    Стандарт RadioEthernet IEEE 802.11 определяет порядок организации беспроводных сетей на уровне управления доступом к среде (MAC-уровне ) и физическом (PHY ) уровне. В стандарте определен один вариант MAC (Medium Access Control ) уровня и три типа физических каналов.
    Подобно проводному Ethernet, IEEE 802.11 определяет протокол использования единой среды передачи, получивший название carrier sense multiple access collision avoidance (CSMA/CA) . Вероятность коллизий беспроводных узлов минимизируется путем предварительной посылки короткого сообщения, называемого ready to send (RTS ), оно информирует другие узлы о продолжительности предстоящей передачи и адресате. Это позволяет другим узлам задержать передачу на время, равное объявленной длительности сообщения. Приемная станция должна ответить на RTS посылкой clear to send (CTS ). Это позволяет передающему узлу узнать, свободна ли среда и готов ли приемный узел к приему. После получения пакета данных приемный узел должен передать подтверждение (ACK) факта безошибочного приема. Если ACK не получено, попытка передачи пакета данных будет повторена.
    В стандарте предусмотрено обеспечение безопасности данных, которое включает аутентификацию для проверки того, что узел, входящий в сеть, авторизован в ней, а также шифрование для защиты от подслушивания.
    На физическом уровне стандарт предусматривает два типа радиоканалов и один инфракрасного диапазона.
    В основу стандарта 802.11 положена сотовая архитектура . Сеть может состоять из одной или нескольких ячеек (сот). Каждая сота управляется базовой станцией, называемой точкой доступа (Access Point, AP ). Точка доступа и находящиеся в пределах радиуса ее действия рабочие станции образуют базовую зону обслуживания (Basic Service Set, BSS ). Точки доступа многосотовой сети взаимодействуют между собой через распределительную систему (Distribution System, DS ), представляющую собой эквивалент магистрального сегмента кабельных ЛС. Вся инфраструктура, включающая точки доступа и распределительную систему, образует расширенную зону обслуживания (Extended Service Set ). Стандартом предусмотрен также односотовый вариант беспроводной сети, который может быть реализован и без точки доступа, при этом часть ее функций выполняется непосредственно рабочими станциями.
    В настоящее время существует множество стандартов семейства IEEE 802.11:
    802.11 - первоначальный основополагающий стандарт. Поддерживает передачу данных по радиоканалу со скоростями 1 и 2 (опционально) Мбит/с.
    802.11a - высокоскоростной стандарт WLAN. Поддерживает передачу данных со скоростями до 54 Мбит/с по радиоканалу в диапазоне около 5 ГГц.
    802.11b - самый распространенный стандарт. Поддерживает передачу данных со скоростями до 11 Мбит/с по радиоканалу в диапазоне около 2,4 ГГц.
    802.11c - Стандарт, регламентирующий работу беспроводных мостов. Данная спецификация используется производителями беспроводных устройств при разработке точек доступа .
    802.11d - Стандарт определял требования к физическим параметрам каналов (мощность излучения и диапазоны частот) и устройств беспроводных сетей с целью обеспечения их соответствия законодательным нормам различных стран.
    802.11e - Создание данного стандарта связано с использованием средств мультимедиа. Он определяет механизм назначения приоритетов разным видам трафика - таким, как аудио- и видеоприложения. Требование качества запроса, необходимое для всех радио интерфейсов IEEE WLAN.
    802.11f - Данный стандарт, связанный с аутентификацией, определяет механизм взаимодействия точек связи между собой при перемещении клиента между сегментами сети. Другое название стандарта - Inter Access Point Protocol . Стандарт, описывающий порядок связи между равнозначными точками доступа.
    802.11g - устанавливает дополнительную технику модуляции для частоты 2,4 ГГц. Предназначен, для обеспечения скоростей передачи данных до 54 Мбит/с по радиоканалу в диапазоне около 2,4 ГГц.
    802.11h – Разработка данного стандарта связана с проблемами при использовании 802.11а в Европе, где в диапазоне 5 ГГц работают некоторые системы спутниковой связи. Для предотвращения взаимных помех стандарт 802.11h имеет механизм «квазиинтеллектуального» управления мощностью излучения и выбором несущей частоты передачи. Стандарт, описывающий управление спектром частоты 5 ГГц для использования в Европе и Азии.
    802.11i (WPA2) – Целью создания данной спецификации является повышение уровня безопасности беспроводных сетей . В ней реализован набор защитных функций при обмене информацией через беспроводные сети - в частности, технология AES (Advanced Encryption Standard) - алгоритм шифрования, поддерживающий ключи длиной 128, 192 и 256 бит. Предусматривается совместимость всех используемых в данное время устройств - в частности, Intel Centrino - с 802.11i-сетями. Затрагивает протоколы 802.1X, TKIP и AES.
    802.11j - Спецификация предназначена для Японии и расширяет стандарт 802.11а добавочным каналом 4,9 ГГц.
    802.11n - Перспективный стандарт, находящийся на сегодняшний день в разработке, который позволит поднять пропускную способность сетей до 100 Мбит/сек.
    802.11r - Данный стандарт предусматривает создание универсальной и совместимой системы роуминга для возможности перехода пользователя из зоны действия одной сети в зону действия другой.
    Из всех существующих стандартов беспроводной передачи данных IEEE 802.11, на практике наиболее часто используются всего три, определенных Инженерным институтом электротехники и радиоэлектроники (IEEE), это: 802.11b, 802.11g и 802.11a.

    Сравнение стандартов беспроводной передачи данных:
    802.11b. В окончательной редакции широко распространенный стандарт 802.11b был принят в 1999 г. и благодаря ориентации на свободный от лицензирования диапазон 2,4 ГГц завоевал наибольшую популярность у производителей оборудования. Пропускная способность (теоретическая 11 Мбит/с, реальная - от 1 до 6 Мбит/с) отвечает требованиям большинства приложений. Поскольку оборудование 802.11b, работающее на максимальной скорости 11 Мбит/с, имеет меньший радиус действия, чем на более низких скоростях, то стандартом 802.11b предусмотрено автоматическое понижение скорости при ухудшении качества сигнала.
    К началу 2004 года в эксплуатации находилось около 15 млн. радиоустройств 802.11b.
    В конце 2001-го появился - стандарт беспроводных локальных сетей 802.11a, функционирующих в частотном диапазоне 5 ГГц (диапазон ISM). Беспроводные ЛВС стандарта IEEE 802.11a обеспечивают скорость передачи данных до 54 Мбит/с, т. е. примерно в пять раз быстрее сетей 802.11b, и позволяют передавать большие объемы данных, чем сети IEEE 802.11b.
    К недостаткам 802.11а относятся большая потребляемая мощность радиопередатчиков для частот 5 ГГц, а также меньший радиус действия (оборудование для 2,4 ГГц может работать на расстоянии до 300 м, а для 5 ГГц - около 100 м). Кроме того, устройства для 802.11а дороже, но со временем ценовой разрыв между продуктами 802.11b и 802.11a будет уменьшаться.
    802.11g является новым стандартом, регламентирующим метод построения WLAN, функционирующих в нелицензируемом частотном диапазоне 2,4 ГГц. Максимальная скорость передачи данных в беспроводных сетях IEEE 802.11g составляет 54 Мбит/с. Стандарт 802.11g представляет собой развитие 802.11b и обратно совместим с 802.11b. Соответственно ноутбук с картой 802.11g сможет подключаться и к уже действующим точкам доступа 802.11b, и ко вновь создаваемым 802.11g. Теоретически 802.11g обладает достоинствами двух своих предшественников. В числе преимуществ 802.11g надо отметить низкую потребляемую мощность, большую дальность действия и высокую проникающую способность сигнала. Можно надеяться и на разумную стоимость оборудования, поскольку низкочастотные устройства проще в изготовлении.
    Организация сети
    Стандарт IEEE 802.11 работает на двух нижних уровнях модели ISO/OSI: физическом и канальном. Другими словами, использовать оборудование Wi-Fi так же просто, как и Etherne t: протокол TCP/IP накладывается поверх протокола, описывающего передачу информации по каналу связи. Расширение IEEE 802.11b не затрагивает канальный уровень и вносит изменения в IEEE 802.11 только на физическом уровне.
    В беспроводной локальной сети есть два типа оборудования: клиент (обычно это компьютер, укомплектованный беспроводной сетевой картой, но может быть и иное устройство) и точка доступа, которая выполняет роль моста между беспроводной и проводной сетями. Точка доступа содержит приемопередатчик, интерфейс проводной сети, а также встроенный микрокомпьютер и программное обеспечение для обработки данных.
    Типы и разновидности соединений
    Соединение Ad-Hoc (точка-точка).
    Все компьютеры оснащены беспроводными картами (клиентами) и соединяются напрямую друг с другом по радиоканалу работающему по стандарту 802.11b и обеспечивающих скорость обмена 11 Mбит/с, чего вполне достаточно для нормальной работы.
    Инфраструктурное соединение.
    Все компьютеры оснащены беспроводными картами и подключаются к точке доступа. Которая, в свою очередь, имеет возможность подключения к проводной сети.
    Данная модель используется когда необходимо соединить больше двух компьютеров. Сервер с точкой доступа может выполнять роль роутера и самостоятельно распределять интернет-канал.
    Точка доступа, с использованием роутера и модема.
    Точка доступа включается в роутер, роутер - в модем (эти устройства могут быть объединены в два или даже в одно). Теперь на каждом компьютере в зоне действия Wi-Fi , в котором есть адаптер Wi-Fi, будет работать интернет.
    Соединение мост.
    Компьютеры объединены в проводную сеть . К каждой группе сетей подключены точки доступа, которые соединяются друг с другом по радио каналу. Этот режим предназначен для объединения двух и более проводных сетей. Подключение беспроводных клиентов к точке доступа, работающей в режиме моста невозможно.
    Репитер.
    Точка доступа просто расширяет радиус действия другой точки доступа, работающей в инфраструктурном режиме.
    Безопасность Wi-Fi сетей
    Как и любая компьютерная сеть, Wi-Fi – является источником повышенного риска несанкционированного доступа. Кроме того, проникнуть в беспроводную сеть значительно проще, чем в обычную, - не нужно подключаться к проводам, достаточно оказаться в зоне приема сигнала.
    Беспроводные сети отличаются от кабельных только на первых двух - физическом (Phy) и отчасти канальном (MAC) - уровнях семиуровневой модели взаимодействия открытых систем. Более высокие уровни реализуются как в проводных сетях, а реальная безопасность сетей обеспечивается именно на этих уровнях. Поэтому разница в безопасности тех и других сетей сводится к разнице в безопасности физического и MAC-уровней.
    Хотя сегодня в защите Wi-Fi-сетей применяются сложные алгоритмические математические модели аутентификации, шифрования данных и контроля целостности их передачи, тем не менее, вероятность доступа к информации посторонних лиц является весьма существенной. И если настройке сети не уделить должного внимания злоумышленник может:
    -заполучить доступ к ресурсам и дискам пользователей Wi-Fi -сети, а через неё и к ресурсам LAN ;
    -подслушивать трафик, извлекать из него конфиденциальную информацию;
    -искажать проходящую в сети информацию;
    -воспользоваться интернет-траффиком;
    -атаковать ПК пользователей и серверы сети
    -внедрять поддельные точки доступа;
    -рассылать спам, и совершать другие противоправные действия от имени вашей сети.
    Для защиты сетей 802.11 предусмотрен комплекс мер безопасности передачи данных.
    На раннем этапе использования Wi-Fi сетей таковым являлся пароль SSID (Server Set ID) для доступа в локальную сеть, но со временем оказалось, что данная технология не может обеспечить надежную защиту.
    Главной же защитой долгое время являлось использование цифровых ключей шифрования потоков данных с помощью функции Wired Equivalent Privacy (WEP) . Сами ключи представляют из себя обыкновенные пароли с длиной от 5 до 13 символов ASCII. Данные шифруются ключом с разрядностью от 40 до 104 бит. Но это не целый ключ, а только его статическая составляющая. Для усиления защиты применяется так называемый вектор инициализации Initialization Vector (IV) , который предназначен для рандомизации дополнительной части ключа, что обеспечивает различные вариации шифра для разных пакетов данных. Данный вектор является 24-битным. Таким образом, в результате мы получаем общее шифрование с разрядностью от 64 (40+24) до 128 (104+24) бит, в результате при шифровании мы оперируем и постоянными, и случайно подобранными символами.
    Но, как оказалось, взломать такую защиту можно соответствующие утилиты присутствуют в Интернете (например, AirSnort, WEPcrack). Основное её слабое место - это вектор инициализации. Поскольку мы говорим о 24 битах, это подразумевает около 16 миллионов комбинаций, после использования этого количества, ключ начинает повторяться. Хакеру необходимо найти эти повторы (от 15 минут до часа для ключа 40 бит) и за секунды взломать остальную часть ключа. После этого он может входить в сеть как обычный зарегистрированный пользователь.
    Как показало время, WEP тоже оказалась не самой надёжной технологией защиты. После 2001 года для проводных и беспроводных сетей был внедрён новый стандарт IEEE 802.1X, который использует вариант динамических 128-разрядных ключей шифрования, то есть периодически изменяющихся во времени. Таким образом, пользователи сети работают сеансами, по завершении которых им присылается новый ключ. Например, Windows XP поддерживает данный стандарт, и по умолчанию время одного сеанса равно 30 минутам. IEEE 802.1X - это новый стандарт, который оказался ключевым для развития индустрии беспроводных сетей в целом. За основу взято исправление недостатков технологий безопасности, применяемых в 802.11, в частности, возможность взлома WEP, зависимость от технологий производителя и т. п. 802.1X позволяет подключать в сеть даже PDA-устройства , что позволяет более выгодно использовать саму идею беспроводной связи. С другой стороны, 802.1X и 802.11 являются совместимыми стандартами. В 802.1X применяется тот же алгоритм, что и в WEP, а именно - RC4, но с некоторыми отличиями. 802.1X базируется на протоколе расширенной аутентификации (EAP), протоколе защиты транспортного уровня (TLS) и сервере доступа Remote Access Dial-in User Server. Протокол защиты транспортного уровня TLS обеспечивает взаимную аутентификацию и целостность передачи данных. Все ключи являются 128-разрядными по умолчанию.
    В конце 2003 года был внедрён стандарт Wi-F i Protected Access (WPA ), который совмещает преимущества динамического обновления ключей IEEE 802.1X с кодированием протокола интеграции временного ключа TKIP, протоколом расширенной аутентификации (EAP) и технологией проверки целостности сообщений MIC. WPA - это временный стандарт, о котором договорились производители оборудования, пока не вступил в силу IEEE 802.11i. По сути, WPA = 802.1X + EAP + TKIP + MIC, где:
    *WPA - технология защищённого доступа к беспроводным сетям
    *EAP - протокол расширенной аутентификации (Extensible Authentication Protocol)
    *TKIP - протокол интеграции временного ключа (Temporal Key Integrity Protocol)
    *MIC - технология проверки целостности сообщений (Message Integrity Check).
    Стандарт TKIP использует автоматически подобранные 128-битные ключи, которые создаются непредсказуемым способом и общее число вариаций которых достигает 500 миллиардов. Сложная иерархическая система алгоритма подбора ключей и динамическая их замена через каждые 10 Кбайт (10 тыс. передаваемых пакетов) делают систему максимально защищённой.
    От внешнего проникновения и изменения информации также обороняет технология проверки целостности сообщений (Message Integrity Check). Достаточно сложный математический алгоритм позволяет сверять отправленные в одной точке и полученные в другой данные. Если замечены изменения и результат сравнения не сходится, такие данные считаются ложными и выбрасываются.
    Правда, TKIP сейчас не является лучшим в реализации шифрования, поскольку в силу вступают новые алгоритмы, основанные на технологии Advanced Encryption Standard (AES), которая, уже давно используется в VPN. Что касается WPA, поддержка AES уже реализована в Windows XP, пока только опционально.
    Помимо этого, параллельно развивается множество самостоятельных стандартов безопасности от различных разработчиков, в частности, в данном направлении преуспевают Intel и Cisco. В 2004 году появляется WPA2, или 802.11i, который, в настоящее время является максимально защищённым.
    Таким образом, на сегодняшний день у обычных пользователей и администраторов сетей имеются все необходимые средства для надёжной защиты Wi-Fi, и при отсутствии явных ошибок (пресловутый человеческий фактор) всегда можно обеспечить уровень безопасности, соответствующий ценности информации, находящейся в такой сети.
    Сегодня беспроводную сеть считают защищенной, если в ней функционируют три основных составляющих системы безопасности: аутентификация пользователя, конфиденциальность и целостность передачи данных. Для получения достаточного уровня безопасности необходимо воспользоваться рядом правил при организации и настройке частной Wi-Fi -сети:
    Шифровать данные путем использования различных систем. Максимальный уровень безопасности обеспечит применение VPN;
    использовать протокол 802.1X;
    запретить доступ к настройкам точки доступа с помощью беспроводного подключения;
    управлять доступом клиентов по MAC-адресам;
    запретить трансляцию в эфир идентификатора SSID;
    располагать антенны как можно дальше от окон, внешних стен здания, а также ограничивать мощность радиоизлучения;
    использовать максимально длинные ключи;
    изменять статические ключи и пароли;
    использовать метод WEP-аутентификации “Shared Key» так как клиенту для входа в сеть необходимо будет знать WEP-ключ;
    пользоваться сложным паролем для доступа к настройкам точки доступа;
    по возможности не использовать в беспроводных сетях протокол TCP/IP для организации папок, файлов и принтеров общего доступа. Организация разделяемых ресурсов средствами NetBEUI в данном случае безопаснее;
    не разрешать гостевой доступ к ресурсам общего доступа, использовать длинные сложные пароли;
    не использовать в беспроводной сети DHCP. Вручную распределить статические IP-адреса между легитимными клиентами безопаснее;
    на всех ПК внутри беспроводной сети установить файерволлы, не устанавливать точку доступа вне брандмауэра, использовать минимум протоколов внутри WLAN (например, только HTTP и SMTP);
    регулярно исследовать уязвимости сети с помощью специализированных сканеров безопасности (например NetStumbler)
    использовать специализированные сетевые операционные системы такие как, Windows Nt, Windows 2003, Windows Xp .
    Так же угрозу сетевой безопасности могут представлять природные явления и технические устройства, однако только люди (недовольные уволенные служащие, хакеры, конкуренты) внедряются в сеть для намеренного получения или уничтожения информации и именно они представляют наибольшую угрозу.
    Точка доступа D-link и ZyXel
    Адаптер Wi-Fi ASUS WL-138g V2
    Стандарты: IEEE 802.11b, IEEE 802.11g
    Дополнительные параметры:
    ASUS WL-138g V2 Wireless LAN PCI Card, 54Mbps
    PCI адаптер для подключения настольного компьютера к беспроводным сетям Wi-Fi - радиус действия: 30 метров в помещении или 60 метров на открытой местности для 802.11g; 40 метров в помещении или 310 метров на открытойместностидля 802.11b
    Скорость передачи:
    802.11g: 6, 9, 12, 18, 24, 36, 48, 54 Мбит/сек;
    802.11b: 1, 2, 5.5, 11 Мбит/сек
    Стандарты: IEEE 802.11g, IEEE 802.11b
    Антенна: Съемная; коннектор RP-SMA
    Диапазон частот: 2.412 - 2.472 ГГц
    Защита данных: WEP-кодирование с 64- или 128-битным ключом; поддержка WPA и WPA2 (включая 802.1x, TKIP, AES)
    Интернет-центр ZyXEL P-330W
    Интернет-центр ZyXEL P-330W предназначен для безопасного подключения к Интернету по выделенной линии Ethernet через домовые сети. С его помощью все домашние компьютеры и сетевые устройства могут совместно использовать высокоскоростной выделенный канал. Благодаря фирменной технологии ZyXEL Link Duo интернет-центр P-330W обеспечивает не только выход в Интернет , но и одновременный доступ к серверам локальных ресурсов домовой сети.
    Основные преимущества
    Рекомендован ведущими интернет-провайдерами. Постоянное подключение к Интернету на скорости до 100 Мбит/с при свободном телефоне.Одновременная работа в Интернете и домовой сети благодаря технологии Link Duo для PPTP/PPPoE
    Двойная защита сети от угроз из Интернета .Коммутатор для непосредственного подключения четырех сетевых устройств
    Универсальное применение в качестве: интернет-центра с подключением по Ethernet , интернет-центра с подключением по Wi-Fi , точки доступа Wi-Fi или беспроводного адаптера Wi-Fi
    Безопасное беспроводное соединение на скорости до 54 Мбит/с и увеличенная дальность благодаря антенне с усилением 5 дБи.
    Характеристики
    Четыре режима работы:
    Интернет-центр с подключением по выделенной линии Ethernet
    Интернет-центр с подключением к провайдеру по Wi-Fi
    Беспроводная точка доступа Wi-Fi
    Беспроводной Ethernet -адаптер Wi-Fi
    1 разъем RJ-45 «WAN» (10BASE-T/100BASE-TX) с автоопределением типа кабеля 4 разъема RJ-45 «LAN» (10BASE-T/100BASE-TX) с автоопределением типа кабеля 1 разъем RP-SMA для подключения антенны.Съемная всенаправленная антенна 5 дБи 7 индикаторов состояния (PWR/SYS, WAN, WLAN, LAN1-4) .Кнопка возврата к заводским установкам
    Беспроводная сеть
    Беспроводная точка доступа стандарта 802.11g 54 Мбит/с, совместимая с устройствами стандарта 802.11b
    Беспроводной клиент стандарта 802.11g 54 Мбит/с, совместимый с устройствами стандарта 802.11b Радиус действия до 100 м в помещении, до 300 м на открытом пространстве.

    Плата маршрутизатора Hi-Speed 54G
    На сегодняшний день в беспроводном секторе компания предлагает линейку беспроводных устройств Hi-Speed 54G, в которую входят роутеры и другие клиентские устройства, а также линейку Wi - Fi антенн Hi-Gain 24. Еще, все используемое оборудование работает в стандарте 802.11G, который обеспечивает максимальную канальную скорость 54 Mbit, что по сегодняшним меркам не так уж и много (мы уже писали от 108Mb оборудовании), однако, наш выбор не случаен. Дело в том, что в нашей сети должны работать устройства, использующие стандарт 802.11G (компьютеры, ноутбуки и беспроводные принт-серверы), так и 802.11B, обеспечивающ ие скорость обмена 11Mb (карманные компьютеры, коммуникаторы, и некоторые модели ноутбуков).
    Стандарты IEEE 802.11b и 802.11g
    Частота 2,4 ГГц
    Максимальное расстояние 300 м
    Скорости работы 1/2/5,5/6/9/11/12/18/24/36/48/54 Мбит/с
    Антенна Внешняя, с возможностью поворота в двух плоскостях
    Особенности антенны. Есть возможность подключения внешней антенны (разъём Reversed-SMA)
    Мощность Передача 13 dBm
    Приём -80 dBm
    Безопасность WEP 64-ех и 128-ми и 256-битный
    Характеристики проводной части
    LAN интерфейс 4 порта 10BASE-T/100BASE-TX
    Особенности Автоматическое определение MDI/MDI-X

    PCI-адаптер HWP54G
    В целом, беспроводный контроллер Hawking Wireless-G PCI ничем не отличается от других подобных контроллеров. Она основана на базе чипа Ralink RT2560F и радиоблока RT2525, расположенного под миниатюрным экраном.
    На тыльном бреккете располагается разъем для подключения антенны и два светодиода, отображающие наличие и статус соединения.
    Новинки
    ASUS WL-160W - адаптер Wi-Fi с поддержкой 802.11n
    28.12.2006
    Тайваньская компания ASUS, авторитетный производитель компьютерной электроники, в том числе решений для беспроводных сетей, представила адаптер WL-160W.
    Новое устройство отличает поддержка черновой версии протокола IEEE 802.11n (Draft), который обеспечивает повышенную скорость передачи данных и увеличенную зону охвата беспроводной сети по сравнению с существующими продуктами для стандартов IEEE 802.11b/g.
    Поддержка технологии Multiple Input, Multiple Output (MIMO) позволяет добиться скорости свыше 100 Мбит/с, что превышает возможности проводных сетей Fast Ethernet . ASUS WL-160W совместим с основными стандартами шифрования WEP, WPA и WPA2, что должно гарантировать надёжную защиту данных при работе в беспроводной сети.
    Новый адаптер Wi-Fi от ASUS подключается к персональному компьютеру или ноутбуку посредством интерфейса USB 2.0. Производитель рекомендует использовать WL-160W вместе с беспроводным маршрутизатором WL-500W Super Speed N. Стоит также отметить, что представленный адаптер достаточно прост в настройке и эксплуатации. Конфигурацию упрощает интуитивный мастер установки. abit выпустила Wi-Fi карту под PCI-Express 1x
    Производители потихоньку начинают «обживать» до сих пор все больше пустующие слоты PCI-Express 1x: abit выпустила выполненный в этом формате адаптер беспроводного доступа стандарта 802.11b/g AirPace Wi-Fi .
    Никаких технологий для «сверхстандартной» пропускной способности не предлагается, максимум – штатные 54 Мбит/с, но «изюминка» все же присутствует – это возможность работать в режиме программной имитации точки доступа, при этом локальные ресурсы компьютера остаются доступными для внешних подключений.
    Изображенный на снимке черный предмет, присоединенный к карте, при всей своей схожести с вантуcом, на самом деле, конечно, является комплектной внешней антенной. Производителем заявлено «низкое энергопотребление» и «расширенная поддержка безопасности», последняя выражается в совместимости со стандартами 64/128-бит WEP и WPA.

    Популярность Wi-Fi-соединения растёт с каждым днём, поскольку огромными темпами увеличивается спрос на этот вид сети. Смартфоны, планшеты, ноутбуки, моноблоки, телевизоры, компьютеры - вся наша техника поддерживает беспроводное подключение к интернету, без которого уже невозможно представить жизнь современного человека.

    Технологии передачи данных развиваются вместе с выпуском новой техники

    Для того чтобы подобрать подходящую для ваших нужд сеть, необходимо узнать про все стандарты Wi-Fi, существующие на сегодняшний день. Компанией Wi-Fi Alliance разработано более двадцати технологий подключения, четыре из которых сегодня наиболее востребованы: 802.11b, 802.11a, 802.11g и 802.11n. Самым последним открытием производителя стала модификация 802.11ас, показатели которой в несколько раз превышают характеристики современных адаптеров.

    Является старшей сертифицированной технологией беспроводного подключения и отличается общей доступностью. Устройство обладает весьма скромными параметрами:

    • Скорость передачи информации - 11 Мбит/с;
    • Диапазон частот - 2,4 ГГц;
    • Радиус действия (при отсутствии объёмных перегородок) - до 50 метров.

    Следует отметить, что этот стандарт имеет слабую помехоустойчивость и низкую пропускную способность. Поэтому, несмотря на привлекательную цену этого Wi-Fi-подключения, его техническая составляющая значительно отстаёт от более современных моделей.

    Стандарт 802.11a

    Эта технология представляет собой улучшенную версию предыдущего стандарта. Разработчики сделали упор на пропускную способность устройства и его тактовую частоту. Благодаря таким изменениям, в этой модификации отсутствует влияние других устройств на качество сигнала сети.

    • Диапазон частот - 5 ГГц;
    • Радиус действия - до 30 метров.

    Однако все преимущества стандарта 802.11a компенсированы в равной степени его недостатками: уменьшенным радиусом подключения и высокой (по сравнению с 802.11b) ценой.

    Стандарт 802.11g

    Обновлённая модификация выходит в лидеры сегодняшних стандартов беспроводных сетей, поскольку поддерживает работу с распространённой технологией 802.11b и, в отличие от неё, имеет достаточно высокую скорость соединения.

    • Скорость передачи информации - 54 Мбит/с;
    • Диапазон частот - 2,4 ГГц;
    • Радиус действия - до 50 метров.

    Как вы могли заметить, тактовая частота снизилась до 2,4 ГГц, но зона покрытия сети вернулась до прежних показателей, характерных для 802.11b. Кроме того, цена на адаптер стала более доступной, что является весомым преимуществом при выборе оборудования.

    Стандарт 802.11n

    Несмотря на то, что эта модификация уже давно появилась на рынке и обладает внушительными параметрами, производители до сих пор работают над её улучшением. В связи с тем, что она несовместима с предыдущими стандартами, её популярность невелика.

    • Скорость передачи информации - теоретически до 480 Мбит/с, а на практике выходит вполовину меньше;
    • Диапазон частот - 2,4 или 5 ГГц;
    • Радиус действия - до 100 метров.

    Так как этот стандарт до сих пор развивается, у него есть характерные особенности: он может конфликтовать с оборудованием, поддерживающим 802.11n, только потому, что производители устройств разные.

    Другие стандарты

    Кроме популярных технологий, производитель Wi-Fi Alliance разработал и другие стандарты для более специализированного применения. К числу таких модификаций, исполняющих сервисные функции, относятся:

    • 802.11d - делает совместимым устройства беспроводной связи разных производителей, адаптирует их к особенностям передачи данных на уровне всей страны;
    • 802.11e - определяет качество отправляемых медиафайлов;
    • 802.11f - управляет многообразием точек доступа разных производителей, позволяет одинаково работать в разных сетях;

    • 802.11h - предотвращает потерю качества сигнала при влиянии метеорологического оборудования и военных радаров;
    • 802.11i - улучшенная версия защиты личной информации пользователей;
    • 802.11k - следит за нагрузкой определённой сети и перераспределяет пользователей на другие точки доступа;
    • 802.11m - содержит в себе все исправления стандартов 802.11;
    • 802.11p - определяет характер Wi-Fi-устройств, находящихся в диапазоне 1 км и движущихся со скоростью до 200 км/ч;
    • 802.11r - автоматически находит беспроводную сеть в роуминге и подключает к ней мобильные устройства;
    • 802.11s - организует полносвязное соединение, где каждый смартфон или планшет может быть маршрутизатором или точкой подключения;
    • 802.11t - эта сеть тестирует весь стандарт 802.11 целиком, выдаёт способы проверки и их результаты, выдвигает требования для работы оборудования;
    • 802.11u - эта модификация известна всем по разработкам Hotspot 2.0. Она обеспечивает взаимодействие беспроводных и внешних сетей;
    • 802.11v - в этой технологии создаются решения для совершенствования модификаций 802.11;
    • 802.11y - незаконченная технология, связывающая частоты 3,65–3,70 ГГц;
    • 802.11w - стандарт находит способы усиления защиты доступа к передаче информации.

    Новейший и самый технологичный стандарт 802.11ас

    Устройства модификации 802.11ас предоставляют пользователям абсолютно новое качество работы в интернете. Среди преимуществ этого стандарта следует выделить следующие:

    1. Высокая скорость. При передаче данных посредством сети 802.11ас используются более широкие каналы и повышенная частота, что увеличивает теоретическую скорость до 1,3 Гбит/с. На практике пропускная способность составляет до 600 Мбит/с. Кроме того, устройство на базе 802.11ас передаёт больше данных за один такт.

    1. Увеличенное количество частот. Модификация 802.11ас оснащена целым ассортиментом частот 5 ГГц. Новейшая технология обладает более сильным сигналом. Адаптер с высоким диапазоном охватывает полосу частот до 380 МГц.
    2. Зона покрытия сети 802.11ас. Этот стандарт предоставляет более широкий радиус действия сети. Кроме того, Wi-Fi-подключение работает даже через бетонные и гипсокартонные стены. Помехи, возникающие при работе домашней техники и соседского интернета, никак не влияют на работу вашего соединения.
    3. Обновлённые технологии. 802.11ас оснащён расширением MU-MIMO, которое обеспечивает бесперебойную работу нескольких устройств в сети. Технология Beamforming определяет устройство клиента и направляет ему сразу несколько потоков информации.

    Познакомившись поближе со всеми существующими на сегодняшний день модификациями Wi-Fi-соединения, вы без труда сможете выбрать подходящую для ваших потребностей сеть. Следует напомнить, что большинство устройств содержит стандартный адаптер 802.11b, который также поддерживается технологией 802.11g. Если вы ищете беспроводную сеть 802.11ас, то количество оснащённых ею устройств сегодня невелико. Однако это весьма актуальная проблема и в скором времени всё современное оборудование перейдёт на стандарт 802.11ас. Не забудьте позаботиться о безопасности доступа в интернет, установив сложный код на своё Wi-Fi-соединение и антивирус для защиты компьютера от вирусного ПО.

    Сегодня беспроводные сети становятся все более популярными. Найти беспроводную точку доступа (Wi-Fi) в отеле, библиотеке, кафе, интернет-зале, аэропорту уже не составляет труда, а домашней беспроводной сетью уж тем более никого не удивишь. Похоже, настала эра бесплатного Интернета. Ведь обычно плату за доступ к Интернету по Wi-Fi не берут: вам нужно только оказаться "в нужное время в нужном месте". В этой главе мы рассмотрим построение собственной небольшой домашней беспроводной сети, но сначала нам нужно познакомиться с технологией Wi-Fi - без теории хорошую сеть не построишь.

    Вообще, Wi-Fi - это название, придуманное талантливыми маркетологами, а на самом деле - это сеть стандарта IEEE 802.11. Но со стандартами беспроводных сетей будем разбираться чуть позже, а пока, чтобы постоянно не тянуть за собой IEEE 802.11, будем кратки - используем название Wi-Fi.

    Как и у всего другого в этом мире, у Wi-Fi есть свои преимущества и недостатки. Начнем с преимуществ. Беспроводная сеть мобильна. Она не нуждается в монтаже (я не считаю выбор расположения точки доступа монтажом, ведь не нужно делать дырки в стенах для витой пары), за исключением тех редких случаев, когда вы проектируете наружную (outdoor) сеть, но сейчас мы будем рассматривать только беспроводные сети, работающие внутри помещения (indoor). Представим, что нам нужно развернуть небольшую офисную или домашнюю сеть. Вы покупаете точку доступа, которая часто совмещает в себе также функции коммутатора (switch), маршрутизатора (router) и DSL-модема, включаете ее, выполняете первоначальную настройку через панель управления точкой доступа, настраиваете беспроводные адаптеры (а если таковых на некоторых компьютерах нет, то подключаете их к Ethernet-портам точки доступа) - и ваша сеть готова к работе. На все-про-все уйдет максимум полчаса (или час, если нужно подключать некоторые компьютеры к Ethernet-портам - ведь еще витую пару обжать нужно) и ваша сеть работает. В случае, если вам нужно будет сменить офис, то переезд сети не займет много времени и ресурсов - нужно будет только перенести точку доступа и компьютеры в другой офис. Дома тоже преимущества беспроводной сети очевидны - вы не привязаны к кабелю и можете свободно перемещаться со своим ноутбуком в пределах квартиры.

    Теперь обобщим все, что сказали. Преимущества беспроводной сети заключаются в мобильности и простоте развертывания сети. Но и недостатков тоже хватает. Во-первых, скорость беспроводной сети все еще отстает от скорости проводной сети: 54 Мбит/с против 1000 Мбит/с при использовании Gigabit Ethernet.

    Во-вторых, полностью от кабеля отказаться не получится. Даже если у вас все узлы сети будут беспроводными (например, все узлы - ноутбуки или компьютеры с беспроводными адаптерами), то для выхода в Интернет все равно будет использоваться DSL-линия, т.е. определенная привязка к кабелю будет (но к кабелю будет привязана только точка доступа, а не все узлы сети).

    В-третьих, в офисных центрах и многоквартирных домах велика вероятность интерференции (накладывания беспроводных сигналов разных беспроводных сетей), что снижает производительность сети, а иногда вообще делает сеть недоступной. Чтобы решить эту проблему, нужно вместе со своими соседями распределять беспроводные каналы.

    В-четвертых, радиус действия беспроводной сети внутри помещения составляет всего 30-50 метров. Если вам этого мало, то нужно несколько точек доступа. Уровень сигнала могут ослабить стены, микроволновые печи, а также обычные радиотелефоны.

    В-пятых, у беспроводных адаптеров довольно высокое энергопотребление, и они достаточно быстро разряжают аккумулятор ноутбука.

    И наконец, проводная сеть безопаснее, так как перехват данных по кабелю - более сложная процедура, чем перехват данных, передающихся по воздуху, как в случае с беспроводной сетью. Поэтому, если безопасность на первом месте, то о беспроводной сети лучше забыть.

    Как видите, недостатков у беспроводной сети больше, чем преимуществ. Но давайте разберемся, насколько важны эти недостатки. Начнем со скорости работы. Какая разница, какая скорость внутренней сети - 54 Мбит/с или 1000 Мбит/с, если скорость интернет-канала всего 2 Мбит/с? Да, обмен данными между компьютерами беспроводной сети будет более медленным, чем обмен данными между компьютерами проводной сети. Но если учесть, что беспроводная сеть строится практически всегда для доступа к Интернету и что клиенты такой сети редко обмениваются данными друг с другом, то скорость для нас не очень важна.

    Второй недостаток обойти не получится, но все же беспроводная сеть позволяет своим узлам свободно перемещаться в пределах радиуса действия сети, поэтому это все же лучше, чем кабель. С интерференцией сигнала вам придется бороться, если ваши ближайшие соседи (в пределах 30-50 метров) тоже используют беспроводную сеть. Лично у меня таких соседей нет, поэтому проблемы тоже такой нет. Даже если у вас будет рядом беспроводная сеть, то всегда можно решить с соседом, какой канал будет использовать он, а какой - вы. В крайнем случае, можно понизить мощность передатчика сети, тем самым уменьшив радиус действия сети и устранив пересечение сигналов.

    Четвертый недостаток - больше не недостаток, а особенность сети. Теоретически, применив более мощные передатчики, можно в помещении увеличить радиус действия сети до 300 метров, но беспроводные точки доступа специально так спроектированы - ведь вероятность того, что на расстоянии 30 метров не будет другой беспроводной сети выше, чем на расстоянии 300 метров. Правильно, такой небольшой радиус действия используется для борьбы с интерференцией. Да и небольшой - это относительно - 30 метров для квартиры или офиса вполне достаточно. Вне помещения радиус действия беспроводной сети без применения специальных антенн составляет 300 метров.

    С повышенным энергопотреблением бороться просто - отключайте ваш беспроводный адаптер, когда вы не используете беспроводную сеть. А обезопасить вашу беспроводную сеть поможет шифрование WPA2, но все равно даже оно не дает 100%-ной гарантии безопасности - кабель безопаснее. Но поскольку у нас домашняя сеть, мы не страдаем паранойей и, учитывая, сколько способов перехвата данных есть в природе, последний недостаток не столь важен.