» »

Цилиндрическая спиральная антенна. Расчет спиральной антенны

23.01.2020

Спиральная антенна принадлежит к классу антенн с бегущей волной. Ее основной диапазон работы - дециметровый и сантиметровый. Она относится к классу поверхностных антенн. Главным ее элементом является спираль, подключенная к коаксиальной линии. Спираль создает диаграмму направленности в виде двух лепестков, излучаемых вдоль ее оси в разные стороны.

Спиральные антенны бывают цилиндрические, плоские и конические. Если необходимая ширина рабочего диапазона составляет 50% и меньше, то в антенне используется цилиндрическая винтовая линия. Коническая спираль увеличивает диапазон приема в два раза по сравнению с цилиндрической. А плоские дают уже двадцатикратное преимущество. Наибольшую популярность для приема в частотном диапазоне УКВ получила цилиндрическая радиоантенна с круговой поляризацией и большим коэффициентом усиления выходного сигнала.

Устройство антенны

Главной деталью антенны является свернутый в спираль проводник. Здесь применяется, как правило, медный, латунный или стальной провод. К нему подсоединен фидер. Он предназначен для передачи сигнала от спирали в сеть (приемник) и в обратном порядке (передатчик). Фидеры бывают открытого и закрытого типа. Фидеры открытого типа представляют собой неэкранированные волноводы. А закрытого типа имеют специальный экран от помех, что делает электромагнитное поле защищенным от внешнего воздействия. В зависимости от частоты сигнала, определяется следующая конструкция фидеров:

До 3 МГц: экранированные и неэкранированные проводные сети;

От 3 МГц до 3 ГГц: коаксиальные провода;

От 3ГГц до 300 ГГц: металлические и диэлектрические волноводы;

Свыше 300 ГГц: квазиоптические линии.

Еще одним элементом антенны стал отражатель. Его предназчение - фокусирование сигнала на спираль. Он изготавливается в основном из алюминия. Основанием для антенны служит каркас с маленькой диэлектрической проницаемостью, например, пенопласт или пластик.

Расчет основных размеров антенны

Расчет спиральной антенны начинается с определения основных размеров винтовой линии. Ими являются:

Количество витков n;

Угол подъема витка a;

Диаметр спирали D;

Шаг витка спирали S;

Диаметр отражателя 2D.

Первое, что надо понять при проектировании спиральной антенны, - она является резонатором (усилителем) волны. Ее особенностью стало высокое входное сопротивление.

От геометрических размеров контура усиления зависит тип волн, возбуждаемых в ней. Соседние витки спирали оказывают очень сильное влияние на характер излучения. Оптимальные соотношения:

D=λ/π, где λ-длина волны, π=3,14

Т.к. λ величина, изменяющаяся и зависящая от частоты, то в расчетах берутся средние значения этого показателя, рассчитанного по формулам:

λ min= c/f max; λ max= c/f min, где с=3×10 8 м/сек. (скорость света) и f max, f min - максимальный и минимальный параметр частоты сигнала.

λ ср=1/2(λ min+ λ max)

n= L/S, где L - общая длина антенны, определяющаяся по формуле:

L= (61˚/Ω) 2 λ ср, где Ω - коэффициент направленного действия антенны, зависящий от поляризации (берется из справочников).

Классификация по рабочему диапазону

По основному диапазону частот, приемо-передающие устройства бывают:

1. Узкополосные. Ширина диаграммы направленности и входное сопротивление сильно зависят от частоты. Это говорит о том, что антенна может работать без перенастройки только в узком спектре длины волны, примерно 10% относительной полосы частот.

2. Широкодиапазонные. Такие антенны могут работать в большом спектре частоты. Но их основные параметры (КНД, диаграмма направленности и т. д.) все-таки зависят от изменения длины волны, но не так сильно, как у узкополосных.

3. Частотнонезависимые. Считается, что здесь основные параметры не меняются при изменении частоты. В таких антеннах имеется активная область. Она имеет возможность перемещаться вдоль антенны, не меняя своих геометрических размеров, в зависимости от изменения длины волны.

Чаще всего встречаются спиральные антенны второго и третьего типа. Первый тип применяется, когда необходима повышенная «четкость» сигнала на определенной частоте.

Самостоятельное изготовление антенны

Промышленность предлагает большой выбор антенн. Разнообразие цен может варьировать от несколько сотен до несколько тысяч рублей. Существуют антенны для телевидения, спутникового приема, телефонии. Но можно изготовить спиральную антенну и своими руками. Это не так сложно. Особой популярностью пользуются спиральные антенны для Wi-Fi.

Они особо актуальны, когда необходимо усилить сигнал от роутера в каком-нибудь большом доме. Для этого понадобится медная проволока, сечением 2-3 мм 2 и длиной 120 см. Необходимо сделать 6 витков диаметром 45 мм. Для этого можно использовать трубку, соответствующего размера. Хорошо подходит черенок от лопаты (у него примерно такой же диаметр). Наматываем проволоку и получаем спираль с шестью витками. Оставшийся конец сгибаем таким образом, чтобы он ровно проходил через ось спирали, «повторяя» ее. Растягиваем винтовую часть, чтобы расстояние между витками находилось в пределах 28-30 мм. Затем приступаем к изготовлению отражателя.

Для этого подойдет кусок алюминия размером 15 × 15 см и толщиной 1,5 мм. Из этой заготовки делаем круг диаметром 120 мм, обрезая ненужные края. В центре круга просверливаем отверстие на 2 мм. Вставляем в него конец спирали и припаиваем обе детали друг к другу. Антенна готова. Теперь необходимо вывести провод излучения из модуля антенны роутера. И конец провода спаять с выходящим из отражателя концом антенны.

Особенности антенны на 433 МГц

В первую очередь, надо сказать, что радиоволны с частотой 433 МГц при своем распространении хорошо поглощаются землей и различными препятствиями. Для ее ретрансляции используются передатчики малой мощности. Как правило, такую частоту применяют различные охранные устройства. Она специально используется в России, с целью не создавать помехи в эфире. Спиральная антенна на 433 МГц требует большего коэффициента выходного сигнала.

Еще одной особенностью при использовании такой приемопередающей аппаратуры является то, что волны данного диапазона имеют возможность складывать фазы прямой и отраженной волны от поверхности. Это может привести либо к усилению сигнала, либо к его ослаблению. Из вышеизложенного можно сделать вывод, что выбор «лучшего» приема зависит от индивидуальной настройки положения антенны.

Самодельная антенна на 433 МГц

Спиральную антенну на 433 МГц своими руками изготовить просто. Она очень компактна. Для этого понадобится небольшой отрезок медного, латунного или стального провода. Можно применить и просто проволоку. Диаметр провода должен составлять 1 мм. Наматываем 17 витков на оправку диаметром 5 мм. Растягиваем винтовую линию, чтобы ее длина составила 30 мм. При этих размерах испытываем антенну на прием сигнала. Изменяя расстояние между витками, путем растяжения и сжатия спирали, добиваемся лучшего качества сигнала. Но надо знать, что такая антенна очень чувствительна к различным предметам, подносимым к ней близко.

Приемная антенна ДМВ

Спиральные антенны ДМВ необходимы для приема телевизионного сигнала. По своей конструкции они состоят из двух частей: отражатель и спираль.

Для спирали лучше применять медь - она имеет меньшее сопротивление и, следовательно, меньшую потерю сигнала. Формулы для ее расчета:

Общая длина спирали L=30000/f, где f- частота сигнала (МГц);

Шаг спирали S= 0,24 L;

Диаметр витка D=0,31/L;

Диаметр провода спирали d ≈ 0,01L;

Диаметр отражателя 0,8 nS, где n- количество витков;

Расстояние до экрана H= 0,2 L.

Коэффициент усиления:

K=10×lg(15(1/L)2nS/L)

Чашка отражателя изготавливается из алюминия.

Другие виды приемопередающей аппаратуры

Коническая и плоская спиральные антенны встречаются реже. Это связано с трудностью их изготовления, хотя они и имеют лучшие характеристики по диапазону передачи и приема сигнала. Излучение таких передатчиков формируется не всеми витками, а лишь теми, длина которых близка к длине волны.

В плоской антенне винтовая линия выполнена в виде свернутой в спираль двухпроводной линии. В этом случае соседние витки возбуждаются синфазно в режиме бегущей волны. Это приводит к тому, что создается поле излучения с круговой поляризацией в сторону оси антенны, позволяя создавать широкую полосу частот. Встречаются плоские антенны с так называемой спиралью Архимеда. Это сложная форма позволяет существенно увеличить частотный диапазон передачи от 0,8 до 21 ГГц.

Сравнение спиральных и узконаправленных антенн

Основное отличие спиральной антенны от направленной заключается в том, что она меньше размером. Это делает ее более легкой, что позволяет производить монтаж с меньшими физическими усилиями. Ее недостатком является более узкий диапазон частот приема и передачи. Также она имеет более узкую диаграмму направленности, что требует «поиска» лучшего положения в пространстве для удовлетворительного приема. Несомненное ее преимущество - простота конструкции. Большим плюсом является возможность настраивать антенну при помощи изменения шага витка и общей длины спирали.

Укороченная антенна

Для лучшего резонанса в антенне нужно, чтобы «вытянутая» длина спиральной части как можно ближе была к значению длины волны. Но она не должна быть меньше ¼ длины волны (λ). Таким образом, λ может доходить до 11 м. Это актуально для КВ-диапазона. В этом случае антенна будет слишком длинной, что неприемлемо. Одним из способов увеличить длину проводника является установка удлиняющей катушки у основания приемника. Еще один вариант - запитывание в цепь тракта тюнера. Его задача - согласование выходного сигнала передатчика радиостанций, с антенной на всех рабочих частотах. Если говорить понятным языком, то тюнер выступает в роли усилителя входящего сигнала с приемника. Такая схема применяется в автомобильных антеннах, где очень важен размер элемента, принимающего радиоволну.

Заключение

Спиральные антенны получили большую популярность во многих областях радиоэлектронных коммуникаций. Благодаря им осуществляется сотовая связь. Также их применяют в телевидении и даже в дальней космической радиосвязи. Одной из перспективных разработок по уменьшению габаритов антенны стало применение конусного рефлектора, позволяющего увеличить длину принимающей волны, по сравнению с обычным отражателем. Однако есть и недостаток, выраженный в уменьшении спектра рабочей частоты. Также интересным образцом является «двухзаходная» коническая спиральная антенна, позволяющая работать в широком спектре частот, благодаря формированию изотропной диафрагмы направленности. Это происходит потому, что линия питания в виде двухпроводного кабеля обеспечивает плавное изменение волнового сопротивления.

Считается, что спиральная антенна характеризуется круговой поляризацией, но мнение ошибочно. В действительности структура витков такова, что принимаются волны и с линейной поляризацией. Это удобно, когда присутствует возможность работать на любой структуре волны. И спиральные антенны используются как облучатель зеркал на спутнике. Для радиолюбителей недостаток в том, что волна с линейной поляризацией ослабляется на три децибела, как известно, в радио и телевещании другого не используется. В стране спиральный облучатель уместен лишь для ловли НТВ+ со спутника, там метод не используется. Ряд специальных применений указанных антенн обсуждать не станем. Впрочем, запросы по теме встречаются в сети. Кому пригодится спиральная антенна, свитая из проволоки и одетая на кусок трубы, ответить не беремся, даже в сборнике работ радиолюбителей этот класс изделий отсутствует напрочь.

Как собрать спиральную антенну

Спиральная антенная напоминает инфракрасный обогреватель специфической конструкции. В СССР военные заводы выпускали приборы бытового назначения. Отсюда сходство параболических тарелок и обогревателей. Для сборки понадобится узнать диаметр и шаг намотки проволоки, количество витков. Из материалов понадобятся:

  1. Стальной лист для экрана, произвольной толщины, чтобы не гнулся от ветра и прочих коллизий.
  2. Отрез проволоки, чтобы хватило намотать витки с запасом.
  3. Питающий кабель: для телевидения 75 Ом, для радио 50 Ом.
  4. Труба пластиковая нужного диаметра.

Спиральные антенны относятся к классу бегущей волны, сопротивление устройств велико, чтобы, правильно рассчитав устройство, подключить без согласования. Сначала размечается труба, с запасом, чтобы удалось воткнуть в экран и приклеить. Вдоль оси (лучше с двух сторон) размечается шаг намотки. В будущем риски используются для выравнивания. Отступите спереди пару-тройку сантиметров, начинайте работать маркером. Обратите внимание, что с обратной стороны виток смещается ровно на полшага.

Спираль наматывается на трубу без учета шага, с нужным числом витков. В дальнейшем, начиная с первой риски, нужно растянуть проволоку правильным образом. Чтобы не происходило смещения в дальнейшем, следует правильное положение зафиксировать каплями клея. Примерно по три-четыре на виток. Тем временем изготовим экран.

Выбирайте квадрат со стороной порядка пяти диаметров трубы намотки. Нет разницы, какова толщина стали, выдерживайте прочностные характеристики. В собранном виде экран перпендикулярен трубе.

Для электрической сборки следует в области окончания спирали (основание трубы) просверлить отверстие и проволоку пропустить внутрь. За экраном в боковине проделываем дополнительную дыру, куда пропускаем оплетку питающего кабель. Электрически центральная жила соединяется со спиралью, экран фидера с экраном антенны. Образуется конструкция для приема и передачи волн. Труба со стальным экраном соединяются клеем-герметиком по уголку, чтобы обеспечить строгую перпендикулярность деталей. Ключевые моменты:

  • Спираль и экран изготавливаются из проводящего материала, к примеру, меди.
  • Труба из диэлектрика.

Расчет спиральной антенны

Спиральные антенны хороши способностью ловить любой тип волны, используемый в наземном вещании. Однако для ловли радио следует ось направить вверх, экран же расположится горизонтально. Устройству присущи ярко выраженные направленные свойства, не ждите, что получится охватить ряд вышек из одной точки. Не так просто. Диаграмма направленности зависит от габаритов спиральной антенны и сильно:

  1. Если длина витка много меньше длины волны, преобладает боковое излучение, поперек оси антенны. Причем поляризация не круговая.
  2. В идеальном случае длина витка укладывается в рамки 0,75 — 1,3 длины волны. В этом случае наблюдаем главный лепесток диаграммы направленности, смотрящий вперед. Разумеется, необходим экран.
  3. Если длина спирали больше 1,5 длины волны, образуется два лепестка, направленных в переднюю полуплоскость. Точнее говоря, получается нечто, напоминающее конусную поверхность.

Косвенно (по второму пункту) читатели уже составили представление о диапазоне. В два раза полосу расширим, применяя не цилиндрическую, а конусную спираль (коническая спиральная антенна). Рекомендуем онлайн калькулятор на сайте http://aerial.dxham.ru/onlajn-raschety/raschety-antenn/raschet-spiralnoj-antenny. Здесь предлагается задать частоту, шаг намотки спирали и длину излучателя:

  • От длины намотки спирали зависит ширина главного лепестка диаграммы направленности. Варьируйте число витков и наблюдайте за параметром (находится в низу страницы калькулятора). Едва приметно меняется диаметр намотки спирали. Этому нет объяснения, создателям калькулятора виднее. Разумеется, понадобится больше меди, что отражается в соответствующих параметрах.
  • Добавим, что с увеличением длины растет и усиление. Это типичный эффект: сужается лепесток – растет усиление. Площадь диаграммы направленности — величина постоянная. Как говорил Ломоносов, если в одном месте чего прибудет, в другом непременно убыть должно. Заметьте, что с ростом витков едва приметно падает ширина полосы пропускания.
  • От шага намотки зависит усиление: чем больше цифра, тем ниже усиление, тем уже диаграмма направленности. На наш взгляд это ошибка авторов, потому что выходит, что выгоднее мотать плотно. Вдобавок проволоки уйдет меньше. Показаны исключительно преимущества, на практике подобное выглядит сомнительно.

Из полезных свойств этого онлайн калькулятора хотелось бы отметить расчет минимального размера экрана. А насчет шага уточните в справочниках, чем и займемся. Кстати, любопытен факт, что по умолчанию на сайте сразу стоит частота WiFi 2,45 ГГц. Здесь сегодня спиральные антенны часто применяются.

Нашли: усиление зависит только от числа витков. Шаг намотки рекомендуется выбирать 0,22 – 0,24 длины волны. На сайте это значение задаем в широких пределах. Предлагаем читателям выбрать шаг, варьируя число витков. Случается, что в отдельных калькуляторах встречаются ошибки, точной информацией владеет лишь веб-программист.

Кстати, в новом источнике сведения приведены, что экран размещается позади спирали на расстоянии 0,12 длины волны. При этом добавляется, что если диаметр экрана выбирается равным 0,8 длины волны и более, сторона квадрата еще больше: 1,1 λ. Ситуация не настолько очевидна, но представьте, что круг обязан вписаться внутрь — все встает на места.

Что касается согласования, сопротивление спиральной антенны сильно зависит от толщины проволоки и с ростом уменьшается. Возможно добиться цифры, равной 75 и даже 50 Ом. В данном случае согласования не требуется, что упрощает эксплуатацию. На высоких частотах это работает. К примеру, волновое сопротивление станет равным 75 Ом при толщине проволоки 5% длины волны. Получая 50 Ом, следует взять толщину проволоки 7% длины волны. Видите, что на частотах WiFi это реально, а значит, рассчитаем параметры так, избегая согласования.

Обратите внимание, в калькуляторе не дается возможности задать толщину провода, а с имеющимся волновое сопротивление равно 140 Ом. Вероятно, это профессиональная хитрость, по нашим сведениям кабель должен быть на 50 Ом на частотах WiFi. Зато легко проверить, выполняется ли зависимость от толщины провода. Приведем таблицу и сравним результат.

Таблица расчетов

Итак, частота составляет 2450 МГц, находим длину волны по простой формуле:

λ = 299 792 458 / 2450 000 000 = 0,1223 метра.

Находим нужный диаметр провода для сопротивления 140 Ом:

0,1223 х 0,02 = 2,45 мм, проверим, совпадает ли это с онлайн калькулятором! Смотрим и видим: 2,4. Ну, если учесть, что без округления получилось 2,447 мм, то будем считать, что два источника повторяют друг друга, а значит указаниям по выбору шага намотки (см. выше) можно поверить. На этом считаем, что самодельная спиральная антенна готова, а также найдем толщину проволоки, при которой сопротивление станет равным 50 Ом: получается 8,5 мм. Причём на указанной высокой частоте сложно обеспечить требуемые условия. Посему целью самостоятельно сделать спиральную антенну чаще задаются компьютерщики.

Что касается нестыковок в калькуляторе, проверяйте читаемую в интернете техническую информацию несколько раз. Считаем, что ответили на вопрос, что такое спиральная антенна, и как сделать спиральную антенну. Плюс конструкции в простоте изготовления, если патчи нужно просчитывать, согласовывать, и не факт, что получится, здесь имеется неплохое устройство, удовлетворяющее заданным условиям, отсеивающее массу помех. С обеих сторон (на прием и передачу) стоят одинаковые антенны, чтобы работать с круговой поляризацией, в противном случае результат станет загадочно-непредсказуемым. Спиральная антенна, собранная самостоятельно — реальность.

На частотах выше 300 МГц и выше широкое применение находят цилиндрические спиральные антенны бегущей волны. Один из вариантов исполнения спиральной антенны приведён на рис.1. Она представляет собой спираль диаметром D и шагом намотки S , и металлического рефлектора, выполненного в виде диска или квадрата с размером ≈2D .

В зависимости от геометрических параметров (электрической длины периметра витка с и электрической длины шага спирали S ) спиральной антенны, в ней могут возбуждаться различные типы волн (моды). Наибольшее значение на характер излучения антенны оказывает фазовое соотношение между соседними витками спирали.

Нас интересует волна Т1 (рис.2), для которой характерно отличие на 360 градусов фазы токов на соседних витках.

Волна Т1 образуется при электрической длине периметра витка, близкой к длине волны λ , при этом спиральная антенна работает в режиме осевого излучения (максимум излучения совпадает с осью спирали).

Оптимальные размеры спиральной антенны:

  • Диаметр витка D=λ/π
  • Шаг спирали S=0,25λ
  • Угол спирали α=12°

Входное сопротивление антенн, при условии 12°≤α≤15° , 0,75λ<с<1,33 λ и количестве витков n>3 равно:

RА ≈140·с/λ (ом)

Ширина основного лепестка диаграммы направленности по уровню половинной мощности:

θ0,5 =52 ·λ/с ·√nS/ λ (градусов)

На рис.3 изображён результат расчёта диаграммы направленности спиральной антенны в вертикальной и горизонтальной плоскости с помощью программы MMANA .

Рис.3 Диаграмма направленности спиральной антенны.

Цилиндрические спиральные антенны, работающие в режиме волны Т1 имеют круговую поляризацию. При приёме сигнала антенной с линейной поляризацией (вертикальной или горизонтальной) сигнал будет ослаблен на 3дБ (в два раза). Чтобы этого избежать, можно использовать систему из двух спиральных антенн с противоположным направлением намотки спирали и питаемых синфазно, расположенных на расстоянии 0,5 λ или 1,5 λ (рис.4).

Входное сопротивление такой антенной системы будет равно 67,6 ома, что хорошо согласуется с волновым сопротивлением коаксиального кабеля (КСВ 1,1 и 1,35 для 75 и 50 омного кабеля соответственно). Волновое сопротивление однопроводной линии (рис.5) участка ab должно соответствовать входному сопротивлению спиральной антенны (≈140ом). Для этого необходимо выдержать соотношение e/d равным ≈2,75.

Для согласования одиночной антенны или антенной системы, состоящей из трёх и более антенн в данном случае можно использовать экспоненциальный согласующий трансформатор, конструктивно выполненный в виде полосковой линии (рис.6). У экспоненциальной линии волновое сопротивление изменяется вдоль её длины по закону:

Z 0 (x)=Z 01 e bx , где

Z 01 - волновое сопротивление линии на входе

Z 0 (x) - волновое сопротивление линии в сечении, расположенном на расстоянии х от её начала

b - параметр, показывающий скорость изменения волнового сопротивления линии

В зависимости от КСВ и известного отношения Z02 /Z01 волновых сопротивлений в конце и в начале линии её минимальную длину расчитывают по формуле:

, где ;

На рис.7 изображён экспоненциальный согласующий трансформатор, расчитаный на согласование сопротивлений 140 ом и 50 ом на частоте 2450 МГц при КСВ 1,2. Расстояние e равно 7 мм, диэлектрик - воздух (ε=1), толщина материала d 1 мм.

Благодаря высокому коэффициенту усиления и стабильности электрических параметров, ввиду невысокой чувствительности к внешним факторам и отклонениям в геометрии, цилиндрические спиральные антенны могут найти широкое применение в системах связи и безопасности для организации дальней связи.

Литература

Сазонов Д.М. Антенны и устройства СВЧ.

Беньковский З., Липинский Э. Любительские антенны КВ и УКВ.

Уронов Л.Г.

ООО «ТехноСфера», 2011 г.

Этот комментарий, который я приведу ниже по тексту, решил выделить отдельной статьёй. У его автора получилась спиральная антенна, которая в наихудших условиях приёма обеспечила работу одновременно двум телевизорам, причём без усилителей и разветвителей. Он назвал свою конструкцию БИСПИРАЛЬНОЙ, хотя такое название уже сочетается с двойной спиральной и с двух спиральной антеннами, которые представлены в разных вариантах и в разных функциональных назначениях. Однако из приведённого примера, вы поймете, что это нечто другое, которому ещё необходимо придумать название.

БИСПИРАЛЬНАЯ
Продавец отговаривал от покупки приёмника DVB –T2: «Принесёшь обратно – не ловится у нас!» Между источником и моим городом 35 км. Расстояние не угрожающее, но поперёк устроены три линии ЛЭП-500, ЛЭП-750 – источники помех. Кроме этого, прямой сигнал загорожен возвышенностью с плотной застройкой 16-тиэтажками. 31-й (551 МГц) и 51-й (714 МГц) частотные каналы.
Первой была изготовлена и испытана двух кольцевая антенна. Она помогла нащупать единственный вариант направления приёма, показала «проблески» ТВ-сигнала, отражённого под острым углом от девятиэтажного дома, стоящего в полу километре .

Изготовил 7-витковую спиральную антенну, рассчитанную на 31-й канал. Основой каркаса служат 4 отрезка полипропиленовой водопроводной трубы (малый тангенс!), для квадратной спирали – одиночный медный многожильный провод сечением 4 кв. мм в виниловой изоляции, пятиметровый кабель. Результат вполне устроил, уверенный приём обоих пакетов. Пробовал сделать подобную антенну по размерам 51-го канала (714 МГц), результат – 31 канал она «не ловит». Отсюда сделал вывод: расчёт спиральной антенны следует выполнять на низкочастотный канал. Вывод номер два: широкополосность спиральной антенны обусловлена её конструкцией (так утверждает Карл Ротхаммель), а не диаметром намотанного провода.
Всё было замечательно до той поры, когда жена попросила устроить ей телевизор ещё и на кухне. Серьёзное расстояние (плюс 13 метров) передачи высокочастотного сигнала – это проблема. Использование краба, а также включение приёмников «цугом» не привело к результату. Испытал три модели усилителей SWA, с лучшим из них интенсивность сигнала подрастала с 70 до 90, но качества на дальнем не было совсем! По отдельности приёмники с этой антенной обеспечивали уверенный приём обоих пакетов.

Строить вторую антенну – загромождать балкон….
Решение пришло. Что если на этом же каркасе устроить вторую спираль, поместив витки между витками первой? Сказано-сделано, доработка была выполнена в 1,5 часа. Результат замечательный! Для второй спирали я использовал провод с посеребренной экранной обмоткой. Интенсивность и качество сигналов на дальнем (!) приёмнике подросли на 15 пунктов. Не замечено влияния приёмников друг на друга с такой антенной.
Известно, что при сложении сигналов от двух спиралей интенсивность сигнала удваивается. Соединять спирали я не пробовал, а было бы интересно. Любопытно также попробовать четыре спирали на общем каркасе…
Надеюсь, что эта информация окажется полезной пытливым и рукастым!

P.S. если была бы кнопка «вставить изображение» - приложил бы фото.

Ну, а теперь – мой выход.

Трудно не согласиться, что очень нужная информация. Остаётся только сожалеть, что ресурс этого блога не обеспечивает сопровождение комментарий фотографиями. Да и сам этот комментарий не сразу проявился, а нашёл я его случайно в кулуарах блога и втиснул в нужное место только спустя две недели.

Сразу по ходу комментария просто уточню, что при сложении двух спиралей, как и других антенн, обладающих направленными свойствами, их общий коэффициент усиления увеличивается только на 3 дБ, если отсчёт усиления этих антенн идёт от полуволнового вибратора (по крайней мере так утверждает автор двухтомника «Антенны» Карл Ротхаммель и «Справочник радиолюбителя конструктора» под общей редакцией Р. М. Малинина).

Опыт автора приложенного комментария практически доказывает, что чем хуже условия распространения радиоволн, тем сильнее сказывается преимущество круговой поляризации, которой обладают спиральные антенны, и даже с учётом потерь в 3 дБ в случае приёма сигнала от телевизионного передатчика с горизонтальной поляризацией.

Теперь же необходимо придумать название этой самодельной антенны, которую испытал автор. Чтобы не запутаться в терминологии спиральных антенн я решил поинтересоваться уже известными названиями, и, таким образом, получилась

Отмечу также, что из всего многообразия антенн только спиральные лидируют по количеству геометрических форм и соответствующих им названий, а что касается двух и более спиралей, то варианты названий пропорционально увеличиваются.

Спиральная антенна с горизонтальной поляризацией.

Это две спирали, с противоположным шагом намотки, расположенные параллельно друг другу в горизонтальной плоскости, с одним общим отражателем, с рекомендованным расстоянием между осями равным 1,5 величины длины волны. Если спирали расположены в горизонтальной плоскости, то они обладают горизонтальной поляризацией, если в одной плоскости друг над другом, то поляризация вертикальная. Две спирали по шесть витков дают усиление 14 дБ, если сравнивать с полуволновым вибратором (напомню, что 6 витков согласно таблице этого же издания – это 11 дБ). Перед одиночной спиралью с волновым сопротивлением 120 Ом сдвоенные спирали обладают преимуществом, так как их общее сопротивление 60 Ом, и они проще согласуется с коаксиальным кабелем 50 или 75 Ом. При однотипной укладке спиралей поляризация будет круговой.

Реже используется конструкция спиральной антенны с горизонтальной поляризацией, где две спирали с разным направлением намотки соединяются по одной оси.

Двойная спиральная антенна.

В том же двухтомнике (особые типы антенн для УКВ и ДМВ диапазонов, глава 26. 8.) существует ещё один термин «двойная спиральная антенна », на самом деле это антенна по свойствам сравнима с четвертьволновым штырём, где последний выполнен в виде спирали, а функцию противовеса выполняет спираль большего диаметра.

Введение

Современное состояние техники связи радиодиапазона нельзя представить без спиральных антенн. Этот тип антенных систем используется благодаря своим характерным качеством: широкополосность, эллиптическая поляризация поля при малых габаритах и простой конструкции.

Спиральные антенны используются как самостоятельно, так и в качестве элементов антенной решётки, облучателя, например, зеркальной антенны, что к преимуществам спиральных антенн прибавляет и направленность.

Благодаря свойству эллиптической поляризации спиральные антенны нашли применение в техники космической связи, поскольку, в ряде случаев поляризация принимаемого сигнала может быть случайной, например, от объектов, положение которых в пространстве изменяется или может быть произвольным (эти объекты могут быть: самолёты, ракеты, спутники и т.д.)

В радиолокации антенны с вращающейся поляризацией позволяют уменьшить помехи создаваемые отражениями от осадков и от поверхности Земли, обусловленные тем, что направление вектора напряжённости электрического поля изменяется на обратное.

Поле с вращающейся поляризацией может применяться также при работе одной и той же антенны на передачу и приёма для увеличения развязки между каналами (при этом излучаемые и принимаемые поля должны иметь противоположное направление вращение).

В настоящие время спиральные антенны широко применяются в качестве антенн устройств личной связи. Значительная доля сотовых телефонов, транковых аппаратов, и мобильных радиостанций содержат в своей конструкции спиральные антенны, работающие в режиме перпендикулярной оси излучения.

В настоящие время я собираюсь исследовать диаграммы направленности плоских спиральных и цилиндрических СА, проанализировать их зависимость от длинны, проследить изменение направленности при изменении параметров антенны. Так же сравнить характеристики СА между собой и с другими типами антенн.

В начале каждого раздела берется определенный тип СА. И дальше будут идти результаты компьютерного анализа для разных режимов и типов. Все расчеты и построения графиков будут проведены в программе МаthCAD 2001i.

Предполагается включение в приложения программ простейшего расчета характеристик спиральной антенны.

Особенностью теории СА является сложность расчета поля антенны.

Из различных конструкций диапазонных антенн эллиптической поляризации наибольшее применение получила спиральная антенна, предложенная Краусом в 1947 году, и ее различные модификации.

Чтобы иметь возможность производить расчет перечисленных характеристик и параметров СА в широком интервале частот, необходимо установить зависимость фазовых скоростей волн тока, распространяющихся вдоль провода в спирали от геометрии и частоты возбуждающего спираль напряжения.

Расчетам фазовой скорости волны тока, распространяющейсявдоль провода спирали, и установлению зависимости фазовых скоростей от геометрии и частоты возбуждающего спираль напряжения, посвящено много работ, первая попытка решения этой задачи принадлежит Поклингтону, который еще в 1897 году, решив задачу об определении фазовой скорости электромагнитной волны, распространяющейся вдоль прямого провода и вдоль кольца, пытался рассмотреть вопрос о распространении электромагнитной волны вдоль спирали. Это удалось ему сделать в ряде частных случаев. Если не считать отдельных работ в этом направлении, связанных с распространением электромагнитной волны в катушках интерес к этой теме возник в конце 40-х годов в связи с широким применением спиралей в качестве замедляющих структур.


Глава 1. Типы спиральных антенн

1.1 Типы спиральных антенн

Среди различных типов широкополосных антенн важное место занимают разнообразные спиральные антенны. Спиральные антенны являются слабо- и средненаправленными широкополосными антеннами эллиптической и управляемой поляризации. Они применяются в качестве самостоятельных антенн, возбудителей волноводно-рупорных антенн эллиптической и управляемой поляризации, элементов антенных решеток.

Спиральные антенны – это антенны поверхностных волн. По виду направителя (замедляющей системы) и способу обеспечения работы в широком диапазоне частот их можно разделить на:

· цилиндрические регулярные, у которых геометрические параметры (шаг, радиус, диаметр провода) постоянны по всей длине и широкополосность обусловлена наличием дисперсии фазовой скорости;

· эквиугольные или частотно-независимые (конические, плоские);

· нерегулярные, к которым можно отнести все другие типы спиральных антенн.


Рис.1.1. 3 Нерегулярные спиральные антенны:

а – плоская с постоянным шагом намотки (архимедова);

б – коническая с постоянным шагом намотки;

в – на поверхности эллипсоида вращения с постоянным углом намотки.


Рис.1.1.4 Нерегулярная цилиндрическая спиральная антенна (с переменным шагом)

По числу заходов (ветвей) и способу их намотки спиральные антенны могут быть одно- и многозаходные с односторонней или двусторонней (встречной) намотки.

Отсутствие или наличие дополнительного замедления фазовой скорости и способ его реализации позволяют разделить спиральные антенны на следующие типы:

· из гладкого провода в однородном диэлектрике (воздухе),

· из провода, обладающего собственным замедлением (импедансные спиральные антенны),

· из провода с собственным замедлением и с диэлектриком (импедансные спирально-диэлектрические антенны).


Рис. 1.1.5 Спиральные антенны с дополнительным замедлением:

а – импедансная;

б,в – спирально-диэлектрическая;

г – импедансная спирально-диэлектрическая.

Одним из основных свойств спиральных антенн является их способность работать в широкой полосе частот с коэффициентом перекрытия от 1.5 до 10 и более. Все спиральные антенны – это антенны бегущей волны, но одно обстоятельство само по себе не обуславливает работы спиральных антенн в диапазоне частот с таким коэффициентом перекрытия.

Работа однозаходных регулярных цилиндрических спиральных антенн и их модификаций в диапазоне частот возможна благодаря их дисперсионным свойствам, вследствие которых в широком диапазоне частот фазовая скорость поля вдоль оси спирали близка к скорости света, отражение от свободного конца спирали мало, длина волны в проводе спирали примерно равна длине витка.

В многозаходных цилиндрических спиральных антеннах рабочий диапазон дополнительно расширяется вследствие подавления в них ближайших низших и высших типов волн, искажающих диаграмму направленности основного типа.

Спиральные антенны с односторонней намоткой излучают поле с эллиптической, близкой к круговой, поляризацией. Направление вращения вектора поля соответствует направлению намотки спирали. Для получения линейной и управляемой поляризации используют спиральные антенны с двусторонней (встречной) намоткой.

Рис.1.1.6. Эквиугольные спиральные антенны с двусторонней (встречной) намоткой: а – коническая четырехзаходная; б – плоская трехзаходная.

Форма частотно-независимых (плоских и конических эквиугольных) спиральных антенн определяется только углами. Каждой длине волны в пределах рабочего диапазона соответствует излучающий участок неизменной формы и постоянных электрических размеров. Поэтому ширина диаграммы направленности и входного сопротивления приближенно остаются постоянными в весьма широких диапазонах частот (10:1 ...20:1).

Для получения однонаправленного излучения с эллиптической поляризацией в меньших диапазонах частот (2:1 ... 4:1) нет необходимости строго выдерживать форму антенны в соответствии с условием частотной независимости. Если при переходе от одной длины волны к другой форма и электрические размеры излучающего элемента повторяются хотя бы приближенно, антенна работает в диапазоне частот с меньшим постоянством характеристик и параметров. Следуя этому, можно построить очень широкое, не подчиняющееся точно принципу частотной независимости семейство антенн в виде одно- или многозаходных спиралей, навитых (по различным законам намотки) на различных поверхностях вращения. Иногда такие антенны называют квазичастотно-независимыми.

Квазичастотно-независимые спиральные антенны для получения управляемой и линейной поляризации также выполняются с двусторонней намоткой. Для получения управляемой, линейной и круговой поляризации могут также применяться различные (цилиндрические, эквиугольные и др.) двухзаходные спиральные антенны.

Рис.1.1.7. Квазичастотно-независимые спиральные антенны с двусторонней (встречной) намоткой и постоянным шагом: а – коническая четырехзаходная; б – полусферическая четырехзаходная; в – эллипсоидная четырехзаходная.