» »

Волновое сопротивление антенны. Входное сопротивление антенны. Полоса пропускания антенны

15.10.2020

Входной импеданс антенны

Входной импеданс антенны (или входное сопротивление антенны) - основная характеристика передающей и приёмной антенны, которая определяется как отношение высокочастотного напряжения и тока питания

Входной импеданс антенны определяется как сумма сопротивления излучения и сопротивления потерь антенны .

Сопротивление потерь , в свою очередь складывается из омических потерь в элементах и проводах антенны, потерь в изоляции (в связи с утечками), сопротивление потерь в земле и тепловые потери в окружающих предметах, лежащих в ближней зоне антенны.

Для повышения КПД антенны необходимо стремиться к согласованию входного импеданса антенны с волновым сопротивлением линии, то есть к выполнению их равенства, а также к уменьшению потерь в антенне.

См. также

Литература

  • Антенна//Физический энциклопедический словарь/Гл. ред. А. М. Прохоров - М.: Сов. энциклопедия, 1983. - 928с., стр. 24-28
  • Драбкин А. Л., Зузенко В. Л., Кислов А. Л. Антенно-фидерные устройства. Изд-е 2-е, испр., доп. и перераб. М.: «Сов. радио», 1974, С. 536, стр. 11
  • Ротхамель, Карл Антенны, Изд-ие 11-е, переработанное и дополненное инженером Алоизом Кришке, 2005, С.

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Входной импеданс антенны" в других словарях:

    Двухполюсник и его эквивалентная схема Внутреннее сопротивление двухполюсника импеданс в эквивалентной схеме двухполюсника, состоящей из последовател … Википедия

    Антенна радиотелескопа РТ 7.5 МГТУ им. Баумана. РФ, Московская область, Дмитровский район. Диаметр зеркала 7,5 метра, рабочий диапазон длин волн: 1 4 мм Антенна устройство для излучения и приёма радиоволн (разновидности электромагнитного… … Википедия

    В гравитации, Максвеллоподобные гравитационные уравнения составляют систему из четырех уравнений в частных производных, которые описывают свойства электроподобных и магнитоподобных гравитационных полей, а также их источников зарядовой плотностью… … Википедия

    Конструкция, используемая для передачи или приема радиоволн (т.е. электромагнитных излучений с длинами волн в пределах от АНТЕННА20 000 м до АНТЕННА1 мм). В качестве примеров использования антенн можно привести радио и телевещание, дальнюю… … Энциклопедия Кольера

    электрический - 3.45 электрический [электронный, программируемый электронный]; Е/Е/РЕ (electrical/electronic/ programmable electronic; Е/Е/РЕ) основанный на электрической и/или электронной, и/или программируемой электронной технологии. Источник … Словарь-справочник терминов нормативно-технической документации

    - (трансформирующие линии, последовательные кабельные трансформаторы, трансформаторы полных сопротивлений) отрезки коаксиальных линий с характерными свойствами, предназначенные для согласования сопротивлений в СВЧ коаксиальном тракте. Коаксиальные… … Википедия

    Коаксиальные трансформаторы (трансформирующие линии, последовательные кабельные трансформаторы, трансформаторы полных сопротивлений) отрезки коаксиальных линий с характерными свойствами, предназначенные для согласования сопротивлений в СВЧ… … Википедия

Измерительный мост высокой частоты представляет собой обычный мост Уитстона и может использоваться для определения степени согласованности антенны с линией передачи. Эта схема известна под многими названиями (например, «антенноскоп» и т. д.), но в основе ее всегда лежит принципиальная схема, изображенная на рис. 14-15.

По мостовой схеме протекают токи высокой частоты, поэтому все резисторы, используемые в ней, должны представлять чисто активные сопротивления для частоты возбуждения. Резисторы R 1 и R 2 подбираются в точности равными друг другу (с точностью 1% или даже больше), а само сопротивление не имеет особого значения. При сделанных допущениях измерительный мост находится в равновесии (нулевое показание измерительного прибора) при следующих соотношениях между резисторами: R 1 = R 2 ; R 1: R 2 =1:1; R 3 = = R 4 ; R 3: R 4 = 1: 1.

Если вместо резистора R 4 включить испытываемый образец, сопротивление которого требуется определить, а в качестве R 3 использовать отградуированное переменное сопротивление, то нулевое показание измерителя разбаланса моста будет достигнуто при значении переменного сопротивления, равном активному сопротивлению испытываемого образца. Таким образом можно непосредственно измерить сопротивление излучения или входное сопротивление антенны. При этом следует помнить, что входное сопротивление антенны чисто активно только в случае, когда антенна настроена, поэтому частота измерений всегда должна соответствовать резонансной частоте антенны. Кроме того, мостовая схема может использоваться для измерения волнового сопротивления линий передачи и их коэффициентов укорочения.

На рис. 14-16 показана схема высокочастотного измерительного моста, предназначенного для антенных измерений, предложенная американским радиолюбителем W 2AEF (так называемый «антенноскоп»).

Резисторы R 1 и R 2 обычно выбираются равными 150-250 ом ,и абсолютная их величина не играет особой роли, важно только, чтобы сопротивление резисторов R 1 и R 2 , а также емкости конденсаторов С 1 и С 2 были равны друг другу. В качестве переменного сопротивления следует использовать только безындуктивные объемные переменные резисторы и нив коем случае не проволочные потенциометры. Переменное сопротивление обычно 500 ом , а если измерительный мост используется для измерений только на линиях передачи, изготовленных из коаксиальных кабелей, то 100 ом , что позволяет более точно производить измерения. Переменное сопротивление градуируется, и при балансе моста оно должно быть равным с сопротивлением испытываемого образца (антенны, линии передачи). Дополнительное сопротивление R Ш зависит от внутреннего сопротивления измерительного прибора и требуемой чувствительности измерительной схемы. В качестве измерительного прибора можно использовать магнитоэлектрические миллиамперметры со шкалой 0,2; 0,1 или 0,05 ма . Дополнительное сопротивление следует выбирать по возможности высокоомным, так чтобы подключение измерительного прибора не вызывало значительного разбаланса моста. В качестве выпрямляющего элемента может использоваться любой германиевый диод.

Проводники мостовой схемы должны быть как можно короче для уменьшения их собственной индуктивности и емкости; при конструировании прибора следует соблюдать симметрию в расположении его деталей. Прибор заключается в кожух, разделенный на три отдельных отсека, в которых, как показано на рис. 14-16, помещаются отдельные элементы схемы прибора. Одна из точек моста заземляется, и, следовательно, мост несимметричен относительно земли. Поэтому мост наиболее подходит для измерения на несимметричных (коаксиальных) линиях передачи. В случае, если требуется использовать мост для измерения на симметричных линиях передачи и антеннах, то необходимо тщательно изолировать его от земли с помощью изолирующей подставки. Антенноскоп может применяться как в диапазоне коротких, так и ультракоротких волн, и граница его применимости в диапазоне УКВ в основном зависит от конструкции и отдельных схемных элементов прибора.

В качестве измерительного генератора, возбуждающего измерительный мост, вполне достаточно использовать гетеродинный измеритель резонанса. Следует иметь в виду, что высокочастотная мощность, поступающая на измерительный мост, не должна превышать 1 вт, и мощность, равная 0,2 вт, вполне достаточна для нормальной работы измерительного моста. Ввод высокочастотной энергии осуществляется с помощью катушки связи, имеющей 1-3 витка, степень связи которой с катушкой контура гетеродинного измерителя резонанса регулируется так, чтобы при отключенном испытываемом образце измерительный прибор давал полное отклонение. Следует учитывать, что при слишком сильной связи градуировка частоты гетеродинного измерителя резонанса несколько смещается. Чтобы не допустить ошибок, рекомендуется прослушивать тон измерительной частоты по точно отградуированному приемнику.

Проверка работоспособности измерительного моста осуществляется подключением к измерительному гнезду безындукционного резистора, имеющего точно известное сопротивление. Переменное сопротивление, при котором достигается баланс измерительной схемы, должно точно равняться (если измерительный мост правильно сконструирован) испытываемому сопротивлению. Эта же операция повторяется для нескольких сопротивлений при разных измерительных частотах. При этом выясняется частотный диапазон работы прибора. Вследствие того, что схемные элементы измерительного моста в диапазоне УКВ имеют уже комплексный характер, баланс моста становится неточным, и если в диапазоне 2 м его еще можно добиться, тщательно выполнив конструкцию моста, то в диапазоне 70 см рассмотренный измерительный мост совершенно неприменим.

После проверки работоспособности измерительного моста его можно использовать для практических измерений.

На рис. 14-17 изображена конструкция антенноскопа, предложенная W 2AEF.

Определение входного сопротивления антенны

Измерительное гнездо измерительного моста непосредственно подключается к зажимам питания антенны. Если резонансная частота антенны была измерена ранее с помощью гетеродинного измерителя резонанса, то мост питается высокочастотным напряжением этой частоты. Изменяя переменное сопротивление, добиваются нулевого показания измерительного прибора; при этом считываемое сопротивление равно входному сопротивлению антенны. Если же резонансная частота антенны заранее не известна, то частоту, питающую измерительный мост, изменяют До тех пор, пока не получают однозначного баланса измерительного моста. При этом частота, обозначенная на шкале измерительного генератора, равна резонансной частоте антенны, а сопротивление, полученное по шкале переменного сопротивления, равно входному сопротивлению антенны. Изменяя параметры схемы согласования, можно (не изменяя частоты возбуждения высокочастотного измерительного моста) получить заданное входное сопротивление антенны, контролируя его по антенноскопу.

Если проводить измерение непосредственно в точках питания антенны неудобно, то в этом случае между измерительным мостом можно включить линию, имеющую электрическую длину Я/2 или длину, кратную этой длине (2·λ/2, 3·λ/2, 4·λ/2 и т. д.) и обладающую любым волновым сопротивлением. Как известно, такая линия трансформирует сопротивление, подключенное к ее входу, в отношении 1: 1, и поэтому ее включение не отражается на точности измерения входного сопротивления антенны с помощью высокочастотного измерительного моста.

Определение коэффициента укорочения высокочастотной линии передачи

Точная длина λ/2 отрезка линии также может быть определена с помощью антенноскопа.

Достаточно длинный свободно подвешенный отрезок линии на одном конце замыкается, а другим концом подключается к измерительному гнезду моста. Переменное сопротивление устанавливается в нулевое положение. Затем медленно изменяют частоту гетеродинного измерителя резонанса, начиная с низких частот, и переходят к более высоким частотам, до тех пор пока не достигается баланс моста. Для этой частоты электрическая длина точно равна λ/2. После этого несложно определить коэффициент укорочения линии. Например, для отрезка коаксиального кабеля длиной 3,30 м при частоте измерений 30 Мгц (10 м ) достигается первый баланс моста; отсюда λ/2 равно 5,00 м . Определяем коэффициент укорочения: $$k=\frac{геометрическая длина}{эектрическая длина}=\frac{3,30}{5,00}=0,66.$$

Так как баланс моста имеет место не только при электрической длине линии, равной λ/2, но и при длинах, кратных ей, то следует найти второй баланс моста, который должен быть при частоте 60 Мгц. Длина линии для этой частоты равна 1λ. Полезно помнить, что коэффициент укорочения коаксиальных кабелей равен приблизительно 0,65, ленточных кабелей - 0.82 и двухпроводных линий с воздушной изоляцией - приблизительно 0,95. Так как измерение коэффициента укорочения с помощью антенноскопа несложно, то следует конструировать все схемы трансформаторов, используя методику измерения коэффициента укорочения, описанную выше.

Антенноскоп можно также использовать для проверки точности размеров λ/2 линии. Для этого к одному концу линии подключается резистор с сопротивлением меньше 500 ом , а другой конец линии подключается к измерительному гнезду моста; при этом переменное сопротивление (в случае, если линия имеет электрическую длину, в точности равную λ/2) равняется сопротивлению, подключенному к другому концу линии.

С помощью антенноскопа может быть определена также точная электрическая длина λ/4 линии. Для этого свободный конец линии не замыкается, и, изменяя частоту гетеродинного измерителя резонанса таким же образом, как было описано выше, определяют самую низкую частоту, при которой (при нулевом положении переменного сопротивления) достигается первый баланс мостовой схемы. Для этой частоты электрическая длина линии точно равна λ/4. После этого можно определить трансформирующие свойства λ/4 линии и рассчитать ее волновое сопротивление. Например, к концу четвертьволновой линии подключается резистор сопротивлением 100 ом .Изменяя переменное сопротивление, добиваются баланса моста при сопротивлении Z M = 36 ом . После подстановки в формулу $Z_{тр}=\sqrt{Z_{M}\cdot{Z}}$ получаем: $Z_{тр}=\sqrt{36\cdot{100}}=\sqrt{3600}=60 ом$. Таким образом, как мы видели, антенноскоп, несмотря на свою простоту, позволяет решить почти все задачи, связанные с согласованием линии передачи с антенной.

Общие сведения

Антенны - радиотехнические устройства, предназначенные для приема или излучения электромагнитных волн. Антенны является составной частью любой радиотехнической системы, связанной с излучением или приемом радиоволн. К таким системам относят: системы радиосвязи, радиовещания, телевидения, радиорелейной связи, радиолокации и др.
Конструктивно антенны представляет собой набор трубок, металлических пластин, проводов, металлических рупоров, отражающих металлических зеркал различной конфигурации, волноводов с металлическими стенками, в которых вырезаны щели, диэлектриков и магнитодиэлектриков.
Принцип работы: электромагнитные колебания высокой частоты, модулированные полезным сигналом, сформированные в передающем устройстве, преобразуются передающей антенной в электромагнитные волны и излучаются в пространство.
Связь между передающим устройством и антенной осуществляется с помощью фидера (специальный кабель).
Электромагнитные волны, поступающие через фидер от передатчика, преобразуются антенной в расходящиеся электромагнитные волны свободного пространства.
Приемная антенна улавливает радиоволны, распространяемые в свободном пространстве (эфире) и преобразует их в высокочастотный сигнал, подводимый с помощью фидера к приемнику. В соответствии с принципом обратимости, свойства антенны, работающей в режиме передачи, не изменяются при работе этой антенны в приемном режиме.

Краткие сведения об основных параметрах антенн

К основным характеристикам и параметрам приёмных и передающих антенн относятся:

полоса пропускания

поляризация

входной импеданс

коэффициент стоячей волны

диаграмма направленности

коэффициент направленного действия

коэффициент усиления антенны

коэффициент полезного действия антенны

шумовая температура антенны

Полоса пропускания антенны

Ширина полосы пропускания - это область рабочих частот антенны, где уровень принимаемого или излучаемого антенной сигнала находится в пределах 0.7 от максимальной амплитуды сигнала, а мощность в пределах 0.5 от максимальной мощности сигнала. Ширина полосы пропускания измеряется в единицах частоты (например, в кГц).
С шириной полосы пропускания антенны непосредственно связана неравномерность амплитудно-частотной характеристики антенны (АЧХ). Неравномерность АЧХ характеризует степень её отклонения от прямой, параллельной оси частот и измеряется в децибелах. Чем лучше рассчитана и выполнена антенна, тем равномерней её АЧХ. Приёмные телевизионные антенны, в основном, широкополосные. Диапазонные телевизионные антенны 1-го, 2-го метровых и дециметрового диапазонов охватывают полосу частот от 48.5 МГц до 862 МГц.
От неравномерности АЧХ антенны сильно зависит качество приёма: при значительной неравномерности АЧХ отдельные телевизионные каналы будут приниматься антенной со значительным ослаблением, если их частота совпадет с провалами АХЧ антенны, что особенно заметно при удалённом приёме сигналов с телецентра.
Неравномерность АЧХ приёмного и передающего тракта зависит не только от качества самой антенны, но и от качества её согласования с фидером (кабелем) и качества самого фидера (кабеля).
У цифрового сигнала неравномерность АЧХ искажает форму принимаемого и передаваемого сигнала.

Поляризация электромагнитных волн

Поляризация электромагнитных волн (франц. polarisation; первоисточник: греч. polos ось, полюс) - нарушение осевой симметрии поперечной волны относительно направления распространения этой волны. В неполяризованной волне колебания векторов s и v смещения и скорости (в случае упругих волн) или векторов Е и Н напряжённостей электрических и магнитного полей (в случае электромагнитных волн), в каждой точке пространства по всевозможным направлениям в плоскости, перпендикулярной направлению распространения волны, быстро и беспорядочно сменяют друг друга, так что ни одно из этих направлений колебаний не является преимущественным. Поперечную волну назовут поляризованной, если в каждой точке пространства направление колебаний сохраняется неизменным или изменяется с течением времени по определённому закону. Плоскополяризованной (линейно-поляризованной) назовут волну с неизменным направлением колебаний, соответственно векторов s или Е. Если концы этих векторов описывают с течением времени окружности или эллипсы, то волну назовут циркулярной или эллиптически - поляризованной. Поляризованная волна может возникнуть: вследствие отсутствия осевой симметрии в возбуждающем волну излучателе; при отражении и преломлении волн на границе раздела двух сред (см. Брюстера закон); при распространении волны в анизотропной среде (см. Двойное лучепреломление).
(см. Большой энциклопедический политехнический словарь)
На практике: если сигнал с телецентра идёт в горизонтальной поляризации, то вибраторы антенны должны быть расположены параллельно плоскости земли, если сигнал передаётся в вертикальной поляризации, то вибраторы антенны должны быть расположены перпендикулярно плоскости земли, если сигналы передаются в двух поляризациях, то нужно использовать две антенны и сигналы с них суммировать. В зоне уверенного приёма можно поставить одну антенну под углом 45 градусов к плоскости земли.
Спутниковый телевизионный сигнал передаётся на Землю в линейной и в круговой поляризации. Для приёма таких сигналов используют разные конверторы: например, для Континент ТВ - линейный конвертор, а для Триколор ТВ - циркулярный конвертор. Форма и размер тарелки не оказывает на поляризацию никакого влияния.

Входной импеданс антенны

Важным параметром антенн является входное сопротивление: (входной импеданс антенны), характеризующее её как нагрузку для передающего устройства или фидера. Входным сопротивлением антенны называется отношение напряжения между точкой подключения (точкой возбуждения) антенны к фидеру, к току в этих точках.
Если антенна питается волноводом, то входное сопротивление определяется отражениями, возникающими в волноводном тракте. Входное сопротивление антенны состоит из суммы сопротивления излучения антенны и сопротивления потерь: Z = R(изл) + R (пот). R(изл) - в общем случае величина комплексная.
В резонансе реактивная составляющего входного импеданса должна быть равна нулю. На частотах выше резонансной импеданс имеет - индуктивный характер, а на частотах ниже резонансной - емкостной характер, что вызывает потерю мощности на границах рабочей полосы антенны. R (пот) - сопротивление потерь антенны зависит от многих факторов, например, от близости ее к поверхности Земли или проводящим поверхностям, омических потерь в элементах и проводах антенны, потерь в изоляции. Входной импеданс антенны должен быть согласован с волновым сопротивлением фидерного тракта (или с выходным сопротивлением передатчика) так, чтобы обеспечить в последнем режим, близкий к режиму бегущей волны.
У телевизионных антенн входной импеданс: логопериодической антенны - 75 Ом, у волнового канала - 300 Ом. Для антенн волнового канала при использовании телевизионного кабеля с волновым сопротивлением 75 Ом требуется согласующее устройство, ВЧ трансформатор.

Коэффициент стоячей волны (KСВ)

Коэффициент стоячей волны характеризует степень согласования антенны с фидером, а также согласование выхода передатчика и фидера. На практике всегда часть передаваемой энергии отражается и возвращается в передатчик. Отраженная энергия вызывает перегрев передатчика и может его повредить. КСВ рассчитывается следующим образом:
KСВ = 1 / KБВ = (U пад + U отр) / (U пад - U отр), где U пад и U отр - амплитуды падающей и отраженной электромагнитных волн.
С амплитудами падающей (U пад) и отраженной (U отр) волн в линии КБВ связано соотношением: KБВ = (U пад + U отр) / (U пад - U отр)
В идеале КСВ=1, значения до 1,5 считаются приемлемым.

Диаграмма направленности (ДН)

Диаграмма направленности является одной из самых наглядных характеристик приёмных свойств антенны. Построение диаграмм направленности производится в полярных или в прямоугольных (декартовых) координатах. Рассмотрим для примера построенную в полярных координатах диаграмму направленности антенны типа «волновой канал» в горизонтальной плоскости (рис. 1). Координатная сетка состоит из двух систем линий. Одна система линий представляет собой концентрические окружности с центром в начале координат. Окружности наибольшего радиуса соответствует максимальной ЭДС, значение которой условно принято равным единице, а остальные окружности - промежуточные значения ЭДС от единицы до нуля. Другая система линий, образующих координатную сетку, представляет собой пучок прямых, которые делят центральный угол в 360° на равные части. В нашем примере этот угол разделен на 36 частей по 10° в каждой.
Положим, что радиоволна приходит с направления, показанного на рис. 1 стрелкой (угол 10°). Из диаграммы направленности видно, что этому направлению прихода радиоволны соответствует максимальная ЭДС на клеммах антенны. При приеме радиоволн, приходящих с любого другого направления, ЭДС на клеммах антенны будет меньше. Например, если радиоволны приходят под углами 30 и 330° (т. е. под углом 30° к оси антенны со стороны директоров), то значение ЭДС будет равно 0,7 максимальной, под углами 40 и 320° - 0,5 максимальной и т. д.


На диаграмме направленности (рис. 1) видны три характерные области - 1, 2 и 3. Область 1, которой соответствует наибольший уровень принятого сигнала, называют основным, или главным лепестком диаграммы направленности. Области 2 и 3, находящиеся со стороны рефлектора антенны, носят название задних и боковых лепестков диаграммы направленности. Наличие задних и боковых лепестков свидетельствует о том, что антенна принимает радиоволны не только спереди (со стороны директоров), но и сзади (со стороны рефлектора), что снижает помехоустойчивость приема. В связи с этим при настройке антенны стремятся уменьшить число и уровень задних и боковых лепестков.
Описанную диаграмму направленности, характеризующую зависимость ЭДС на клеммах антенны от направления прихода радиоволны, часто называют диаграммой направленности по «полю», так как ЭДС пропорциональна напряженности электромагнитного поля в точке приема. Возведя в квадрат ЭДС, соответствующую каждому направлению прихода радиоволны, можно получить диаграмму направленности по мощности (пунктирная линия на рис. 2).
Для численной оценки направленных свойств антенны пользуются понятиями угла раствора основного лепестка диаграммы направленности и уровня задних и боковых лепестков. Углом раствора основного лепестка диаграммы направленности называют угол, в пределах которого ЭДС на клеммах антенны спадает до уровня 0,7 от максимальной. Угол раствора можно также определить, пользуясь диаграммой направленности по мощности, по ее спаду до уровня 0,5 от максимальной (угол раствора по «половинной» мощности). В обоих «случаях численное значение угла раствора получается, естественно, одним и тем же.
Уровень задних и боковых лепестков диаграммы направленности по напряжению определяется как отношение ЭДС на клеммах антенны при приеме со стороны максимума заднего или бокового лепестка к ЭДС со стороны максимума основного лепестка. Когда антенна имеет несколько задних и боковых лепестков различной величины, то указывается уровень наибольшего лепестка.

Коэффициент направленного действия (КНД)

Коэффициент направленного действия: (КНД) передающей антенны - отношение квадрата напряженности поля, создаваемой антенной в направлении главного лепестка, к квадрату напряженности поля создаваемой ненаправленной или направленной эталонной антенной (полуволновый вибратор - диполь, коэффициент направленного действия которого по отношению к гипотетической ненаправленной антенне равен 1,64 или 2,15 дБ) при одинаковой подводимой мощности. (КНД) является безразмерной величиной, может выражаться в децибелах (дБ, дБи, дБд). Чем уже главный лепесток (ДН) и меньше уровень боковых лепестков, тем больше КНД.
Реальный выигрыш антенны по мощности относительно гипотетического изотропного излучателя или полуволнового вибратора характеризуется коэффициентом усиления по мощности КУ (Мощ.), который связан с (КНД) соотношением:
КУ (Мощ.) = КНД - КПД (коэффициент полезного действия антенны)

Коэффициент усиления (КУ)

Коэффициент усиления (КУ) антенны - отношение мощности на входе эталонной антенны к мощности, подводимой к входу рассматриваемой антенны, при условии, что обе антенны создают в данном направлении на одинаковом расстоянии равные значения напряженности поля при излучении мощности, а при приёме - отношение мощностей, выделяемых на согласованных нагрузках антенн.
КУ является безразмерной величиной, может выражаться в децибелах (дБ, дБи, дБд).
Усиление антенны характеризуется выигрышем по мощности (напряжению), которая выделяется в согласованной нагрузке, подключенной к выходным зажимам рассматриваемой антенны, по сравнению с "изотропной" (то есть имеющей круговую ДН) антенной или, например, полуволновым вибратором. При этом надо учитывать направленные свойства антенны и потери в ней (КПД). У телевизионных приёмных антенн (КУ) равен, примерно, коэффициенту направленного действия (КНД) антенны, т.к. коэффициент полезного действия таких антенн находится в пределах 0,93…0,96. Коэффициент усиления широкополосных антенн зависит от частоты и неравномерен во всей полосе частот. В паспорте на антенну нередко указывают максимальное значение (КУ).

Коэффициент полезного действия (КПД)

В режиме передачи, (КПД) - это отношение мощности излучаемой антенной к мощности, подведённой к ней, так как существуют потери в выходном каскаде передатчика, в фидере и самой антенне, КПД антенны всегда меньше 1. В приёмных телевизионных антеннах КПД находится в пределах 0,93…0,96.

Шумовая температура

Шумовая температура антенны - характеристика мощности шумов антенны по всём диапазоне принимаемых частот. Сами антенны не "шумят". Источником шумов являются объекты на Земле и в космосе. Чем уже диаграмма направленности антенны, тем меньше влияют на неё шумы. На Земле" шумят" все предметы, атмосфера и сама Земля, поэтому шумы антенны зависят от её угла места и наличия посторонних предметов в направлении приёма (ветки деревьев и др.).Источниками шумов являются и электромагнитные излучения, вызванные деятельностью человека. Типичная шумовая температура параболической антенны диаметром 90 см в Ku-диапазоне для угла места 30 градусов - 25-30 К.
Шумы окружающего пространства и приёмного тракта (конвертор + ресивер) повышают порог устойчивой работы приёмной системы для спутникового сигнала, на практике это приводит к увеличению размеров тарелки, т.к. применение малошумящих конверторов и ресиверов даёт меньший эффект.

Что такое входное сопротивление антенны?

Все знают, что входное сопротивление (импеданс) антенны редко когда бывает равный волновому сопротивлению фидерной линии. Здесь постараюсь показать, как согласовать нагрузку с фидером эффективными методами.
Далее все примеры будут даны для коаксиального кабеля с волновым сопротивлением 50 ом, но принцип расчёта действителен и для других как несимметричных, так и симметричных линий передач.

Входное сопротивление антенны


Сначала выясним, что такое входное сопротивление антенны. Считается, что оно представляет собой последовательно соединённые реактивное и активное сопротивления. Но в антенне или в фидере нет реального резистора, конденсатора или катушки индуктивности. Всё это только результат расчёта эквивалентных им сопротивлений антенной цепи.

Пусть в качестве нагрузки будет использован некий «чёрный ящик», на входной разъём которого подаётся ВЧ напряжение. На этом разъёме реально можно измерить мгновенное напряжение u’ и ток i’, а также разницу фазы между ними j . Входное сопротивление есть рассчитанное активное и реактивное сопротивления, подключая к которым данное ВЧ напряжение получим точно такие же u’, i’ и j .


Известно, что такой эквивалент может иметь как последовательное (serial, Zs=Rs+jXs), так и параллельное (parallel, Zp=Rp||+jXp) соединение активных и реактивных сопротивлений. Каждому последовательному соединению активного (Rs) и реактивного (Xs) сопротивлений соответствует параллельное соединение активного (Rp) и реактивного (Xp) сопротивлений. В общем случае Rs № Rp и Xs № Xp. Привожу формулы, по которым можно пересчитать численные значения с одного соединения на другое.


Например, пересчитаем последовательное соединение Zs=40+j30 W в параллельное Zp.


Чаще используют эквивалент последовательного включения, но и эквивалент параллельного включения имеет такое же практическое значение. Zs называется импедансом последовательного включения, R – резистансом, X – реактансом, а Zp импедансом параллельного включения.

В параллельном включении часто используется админтанс, но это проводимость, и наглядность при его использовании сильно уменьшается. Обычно термин „импеданс" указывает, что речь идёт о последовательном соединении эквивалентного активного и реактивного сопротивлений.

Однако, пересчёт последовательного соединения сопротивлений в параллельное соединение довольно часто нужен для компенсации реактивной составляющей. Только следует иметь в виду, что при последовательной и параллельной компенсации получаем разные активные составляющие сопротивления.

Для пересчёта Zs в Zp и наоборот очень хорошо подходит программа NETCALK .
Возникает вопрос, как измерить параметры комплексной нагрузки. К сожалению, простой измеритель КСВ тут мало пригоден. Я для этого пользуюсь векторным анализатором VA1 , который на дисплее показывает все нужные цифровые значения. Так же можно воспользоваться прибором AA-330 .

Компенсация реактивной составляющей


Реактивную составляющую сопротивления (импеданса) полезно компенсировать. Это уменьшает КСВ. Суть компенсации есть выравнивания фаз напряжения и тока. Менять угол фазы между напряжением и током можно подключая реактивный элемент последовательно или параллельно.

Чтобы разница в углах фаз стала равна нулю, надо подключить такое реактивное сопротивление, какое присутствует в эквивалентной схеме нагрузки, только с противоположным знаком. Известно, что реактивное сопротивление ёмкости имеет отрицательный знак, индуктивности – положительный.

В случае последовательной компенсации дополнительный эквивалентный реактивный элемент с противоположным знаком включается последовательно и получается последовательный контур, а в случае параллельной компенсации – параллельно, получается параллельный контур. В случае последовательного соединения сопротивлений они просто складываются


А в случае параллельного соединения


Если нагрузку полностью скомпенсировать, эти контура находятся в резонансе, при этом Xs=0 или Xp= Ґ . Например, имеем нагрузку Zs=50+j30 W (Zp=68||+j113 W ), SWR=2.

Если последовательно с нагрузкой включим ёмкость с Xc=-30 W , получим Z=50 W и SWR=1. Если параллельно нагрузке подключим ёмкость с Xc=-113 W , получим Z=68 W и SWR=1,36. В случае последовательной компенсации дополнительный элемент с эквивалентном соответствует последовательному контуру, в случае параллельного – параллельному.

Согласование сопротивлений


Как я уже писал, по-разному подключая компенсирующий элемент, в общем случае получаем разный Z, тем самым и КСВ. Посмотрим, как можно скомпенсировать (согласовать) нагрузку Zs=22+j25 W (Zp=50,4||+j44 W ), SWR=2,94.

Последовательно подключив конденсатор с Xc=-25 W получим Z=22 W (SWR=2,27). Если параллельно нагрузке подключим конденсатор с Xc=-44 W , получим Z=50,4 W и SWR=1,01. Как видим, в данном случае параллельная компенсация бесспорно лучше. Если такая нагрузка будет подключена к передатчику, который работает на частоте 14 MHz, то параллельно нагрузке следует подключить конденсатор ёмкостью


Если передатчик имеет выходной П-контур, то эту ёмкость надо добавить к выходному (холодному) конденсатору. Это можно сделать с помощью выходного конденсатора, если его увеличить на необходимую величину. В таком случае получим хорошее согласование передатчика, рассчитанного на 50 W , с нагрузкой (в точке соединения фидера с передатчиком, r =0), хотя КСВ в кабеле останется 2,94. W , то параллельно конденсатору П-контура надо подключить индуктивность 0,5mH (Xl=44 W ) или, если есть такая возможность, ёмкость „холодного" конденсатора П-контура уменьшить на 258pF (Xs=-44 W ). Частично из-за этого, настраивая П-контур на реальную нагрузку, мы и получаем неодинаковую ёмкость „холодного" конденсатора сравнительно с 50 W эквивалентом.

Частично потому что, меняя ёмкость конденсаторов П-контура, можно в некоторых пределах настроить передатчик на нагрузку, не равную рассчитываемой при проектировании передатчика. Если передатчик не имеет П-контура или тюнера, то эта не скомпенсированная реактивность расстраивает выходной фильтр передатчика, коэффициент отражения r >0 и передатчик не способный отдать в фидер расчитанную мощность.

Хочу отметить, что ни П-контур, ни тюнер в трансивере или около него, КСВ в фидере не изменяет. Эти устройства способны только согласовать выходное сопротивление передатчика с входным сопротивлением фидера в точке его подключения к передатчику (не путать с волновым сопротивлением фидера), т.е. улучшить коэффициент отражения r . Чтобы улучшить КСВ в кабеле, надо согласовать нагрузку с волновым сопротивлением фидера в точке их соединения.
Можно одновременно применять последовательную и параллельную компенсацию. Это зависит от конкретного случая. Приведу реальный пример. Сопротивление антенны на 1,9MHz имеет импеданс Zs=26+j44
W (Zp=100||+j59 W ), SWR=3,7.

Если параллельно нагрузке подключить конденсатор с Xc=-59 W , получим Z=100 W , SWR=2, если последовательно подключим конденсатор с Xc=-44 W , получим Z=26, SWR=1,92. Последний вариант лучше, но всё равно плохой. Теперь, не изменяя Rs, подберём Xs такое, что бы Rp стало бы 50 W . Этому варианту соответствует Zs=26+j25 W . Последовательно с нагрузкой подключим реактивность Xs=(26+j25)-(26+j44)=-j19 W (конденсатор 4,4nF). Полученный Zs=26+j25 W пересчитаем в Zp=50||+j52 W .

Теперь параллельно подключаем реактивность Xp=-j52 W (конденсатор 1,6nF) и получаем Z=50 W и SWR=1. Всё, антенна с 50 W фидером согласована!
Всё это без труда можно посчитать с помощью программы MMANA . Я всё это писал для того, что бы был понятен механизм настройки и что на что влияет.


Можно согласовать и другим способом. Известно, что если к фидеру подключить нагрузку, сопротивление которой не равно волновому сопротивлению фидера, то фидер будет трансформировать сопротивление нагрузки.

Численное значение сопротивления на входе фидера будет зависеть от сопротивления нагрузки, волнового сопротивления и длины фидера. С помощью программы APAK-EL находим, что если к нагрузке Zs=26+j44 W подключить фидер 50 W длиной 4,76м., то на частоте 1,9MHz на его входе получим Zs=50+j69 W .

Если в этом месте включим последовательно ёмкость с Xc=-69 W (конденсатор 1,2нФ), то получим Z=50 W и SWR=1. С этого места можно подключать 50 W фидер любой длины.


Возможны и другие варианты согласования. Это зависит от понимания сути и фантазии.
Теперь попробуем согласовать антенну на 14 MHz, сопротивление которой Zs=150-j260 W (Zp=600||-j346 W ). Как видим, одним компенсирующим элементом не обойдёмся.

Нам нужно получить 50 W , а не 150 W или 600 W . Вводим данные в APAK-EL и находим ближайшую к нагрузке точку, где Rtr=50 W .


Как видим, длина дополнительного кабеля будет только 30см. В этом месте будем иметь Zs=50-j161 W . Если в этом месте последовательно подключим индуктивность с Xl=161 W , то получим полное согласование (Z=50 W , SWR=1).
Всё это можно согласовать и в месте подключения нагрузки к фидеру. Пример с MMANA


Как видим, согласовать можно, подключив индуктивность 1,35 m H параллельно нагрузке, а сигнал на нагрузку подавать через конденсатор 68,5pF.

Шлейфы


Шлейфами называются закороченые или открытые отрезки фидера. В идеальном фидере (фидере без потерь) сопротивление таких отрезков есть чисто реактивное, активной части нет.

Такими отрезками фидера можно пользоваться при компенсации реактивной составляющей. Это удобно, если применяется параллельное компенсирование. Часто используется отрезки до четверти длины волны. Они могут быть и длиннее, но реальные фидеры имеют потери и, чем длиннее линия, тем больше.

Замкнутый шлейф электрической длины до 1/4 l имеет на конце индуктивное реактивное сопротивление, разомкнутый – ёмкостное. Такими отрезками фидера можно имитировать как индуктивность, так и ёмкость. Но надо не забыть, что индуктивность или ёмкость шлейфа зависят от частоты.

В приведённом примере мы видим, что надо подключить индуктивность 1,352 m H. С помощью MMANA получаем, что такую индуктивность на 14 MHz имеет закороченный на конце шлейф с кабеля RG58/U длиной 2,62м.


На том же примере попробуем то же согласовать с помощью MMANA другим способом, используя только шлейф.

Таким образом, если короткозамкнутый шлейф длиной 67,5см. подключить параллельно фидеру на расстоянии 2,57м. от нагрузки, то так же полностью согласуем фидер с нагрузкой. Или же, можно параллельно подключить разомкнутый шлейф длиной 2,84м. на расстоянии от нагрузки 3,82м.
Возможны и другие варианты согласования. Но следует помнить, что потери в низкоомных (коаксиальных) фидерах при больших величинах КСВ значительны, так что желательно выбирать такой способ согласования, при котором получаются самые короткие отрезки фидера с большим КСВ и применять толстые качественные кабеля.
Как видите, практически можно согласовать все и по-разному.
Только для этого нужен измерительный прибор, ну, и конечно, компьютер. Комплексное сопротивление антенны не измеришь ни тестером, ни измерителем КСВ. Без этих данных согласование превращается в трудоёмкое занятие и часто приводит к неудовлетворительным результатам.

В этой статье я описал несколько методов согласования. Постарался описать суть вопроса как можно проще, но очень просто в таком вопросе не получается.
Эта статья мною написана несколько лет назад на литовском языке и сейчас переведена на русский. В настоящее время имеются другие версии программ APAK-EL и MMANA, примеры же приведены используя старые версии.
APAK-EL имеет утилиту, с помощю которой тоже можно рассчитать компенсирующие реактивности. Однако сам принцип согласования от этого не меняется.

Надеюсь, что статья кое-кому будет полезна.

Vytas (LY3BG), ly3bgtakas.lt

В. Поляков, RA3AAE

В этой статье нет ничего нового, она позволяет лишь взглянуть под иным углом зрения на давно известные факты, а также может послужить общеобразовательным целям. Есть и немного ностальгии…

Хорошо известно, что электрически короткие проволочные или штыревые антенны (длиной менее четверти волны) имеют емкостное реактивное сопротивление X и малое активное сопротивление излучения r, причем первое растет с укорочением антенны, а второе - уменьшается. Потери в самой антенне весьма малы, это подтверждают и программы моделирования антенн, например MMANA, показывая высокий КПД. Потери возникают в согласующей катушке (удлиняющей, либо контурной) и в заземлении.

Эквивалентную схему короткой заземленной приемной антенны обычно изображают так, как на рис. 1 справа. Е обозначает напряженность поля принимаемого сигнала, а hд - действующую высоту антенны. Слева показана сама антенна и распределение тока в ней. Оно синусоидальное, но для коротких антенн его приближенно считают треугольным.

Емкостное сопротивление Х и сопротивление излучения r антенны определяют по формулам, приводимым во многих книгах и учебниках:
X = Wctg(2ph/l), и r = 160p2(hд/l)2,

где W - волновое сопротивление провода антенны.

Формулы удается упростить, введя волновое число k = 2p/l и заменив умножение на котангенс делением на тангенс, а его, в свою очередь, заменив аргументом, ввиду его малости (h << l). С учетом того, что действующая высота hд антенны в виде короткого вертикального провода равна половине геометрической h из-за треугольного распределения тока, получим:

X = W/kh, и r = 10(kh)2.

К сожалению, эквивалентная схема на рис. 1 недостаточно наглядна, поскольку не показывает реального шунтирования входа приемника антенной. Целесообразно воспользоваться правилами преобразования последовательного соединения емкости и активного сопротивления в паралельное (см. книги по теории цепей). Для нашего случая, когда r << X, они очень просты (рис. 2).


Получившаяся эквивалентная схема приемной антенны показана на рис. 3, и из нее видно, что импеданс антенны определяется параллельно включенными емкостью С и резистором R. Этот импеданс шунтирует вход приемника независимо от того, есть напряжение сигнала на антенне, или его нет. Емкость С - это просто емкость антенны, для тонкого провода ее легко найти из расчета 5...7 пФ/м, а для относительно "толстых" телескопических антенн - 8...12 пФ/м.

Сопротивление R найдем, подставив в последнюю формулу на рис. 2 найденные выше значения X и r:
R = W2/10(kh)4.

Для тонкого провода в свободном пространстве W обычно полагают равным 600 Ом. Подставляя это значение, а также k = 2p/l, получим расчетную формулу:
R = 23(l/h)4.

С ее помощью, для иллюстрации, посчитаем емкость и сопротивление короткой проволочной вертикальной антенны для частоты 1 МГц (средняя частота диапазона СВ) и полагая сопротивление заземления равным нулю.

Результаты расчета сведены в таблицу:

Высота антенны h, м 1 3 10 30
h/l 1/300 1/100 1/30 1/10
С, пФ 6 18 60 180
R, Ом 11
2.10
9
2,3.10
7
2.10
5
2,3.10
R 0,2 ТераОм 2 ГигаОм 20 МегаОм 230 килоОм

Они поражают. Из таблицы видно, что эквивалентное (параллельное входу) активное сопротивление короткой вертикальной антенны огромно. Оно практически не шунтирует вход приемника. Это позволяет при низком входном сопротивлении приемника не учитывать активное сопротивление антенны R и считать, что на вход приемника поступает только емкостный ток через С (рис. 3). Тогда напряжение на входе приемника удается рассчитать просто по закону Ома.

Пример: к 50-омному входу приемника, работающего в диапазоне СВ, подключена 3-х метровая вертикальная антенна. Ее емкостное (18 пФ) сопротивление на частоте 1 МГц более 8 кОм. При напряженности поля радиостанции 10 мВ/м наведенное на антенне напряжение будет: E.hд = 10мВ/м.1,5м = 15 мВ. Емкостный ток получается около 15мВ/8кОм = 2мкА. Помножив его на сопротивление входа (50 Ом) получаем напряжение на входе около 100 мкВ.

Из примера видно, что короткие антенны не могут развить на низкоомном входе приемника большого напряжения. В то же время на входе приемника с высокоомным входом (значительно более 8 кОм) та же антенна могла бы развить напряжение, близкое к E.hд, т. е. около 15 мВ. Именно такими и были старинные радиоприемники - одноламповые регенераторы, прямого усиления, и даже ламповые супергетеродины.

В одноконтурных регенераторах антенну подключали к контуру либо непосредственно, либо через конденсатор связи небольшой емкости (рис. 4). Непосредственное подключение (гнездо А2) годится только для совсем коротких антенн с небольшой емкостью, которая компенсируется соответствующим уменьшением контурной емкости С2. Длинную антенну нельзя включать в гнездо А2, ибо это привело бы к сильной расстройке и внесению большого затухания в контур. Ее включали в гнездо А3, причем конденсатор связи С2 в разумно спроектированных конструкциях делали регулируемым, например 8…30 пФ, что позволяло ослаблять связь с антенной при сильных сигналах и больших помехах.

Резонансное сопротивление контура достигает на частотах СВ диапазона сотен килоом, а на ДВ еще больше. В регенераторах его надо еще помножить на коэффициент регенерации, тогда получаются многие мегаомы. Как видим, старинные приемники очень хорошо подходили для работы с короткими проволочными антеннами, имея очень высокое входное сопротивление. Не изменилась ситуация и в приемниках прямого усиления с УРЧ и супергетеродинах.

В эпоху до широкого применения магнитных антенн для связи с антенной использовали катушку L1 имевшую в 4…5 раз больше витков, чем контурная. Рассчитывали, чтобы эта катушка с емкостью «стандартной» антенны образовывала резонансный контур, настроенный на частоту ниже самой нижней частоты диапазона. Тогда выравнивался коэффициент передачи входной цепи по диапазону. Расчет и графики можно найти в учебниках по радиоприемным устройствам. Но в них не упоминают другой эффект от такого решения. Сопротивление контура трансформировалось к антенне в 16…25 раз при сильной связи и несколько меньше при слабой. Опять таки входное сопротивление приемника получалось несколько мегаом и более.

Приведенные данные ясно показывают, что для экспериментов с уникальными слаботочными антеннами (метелочными, костровыми и т. д.) нужны именно приемники с высокоомным входом, включающим настроенный контур, лампу или полевой транзистор.