» »

Качественный умзч на транзисторах. Фото готовых усилителей

11.07.2020

После освоения азов электроники, начинающий радиолюбитель готов паять свои первые электронные конструкции. Усилители мощности звуковой частоты, как правило самые повторяемые конструкции. Схем достаточно много, каждая отличается своими параметрами и конструкцией. В этой статье будут рассмотрены несколько простейших и полностью рабочих схем усилителей, которые успешно могут быть повторены любым радиолюбителем. В статье не использованы сложные термины и расчеты, все максимально упрощено, чтобы не возникло дополнительных вопросов.

Начнем с более мощной схемы.
Итак, первая схема выполнена на известной микросхеме TDA2003. Это монофонический усилитель с выходной мощностью до 7 Ватт на нагрузку 4 Ом. Хочу сказать, что стандартная схема включения этой микросхемы содержит малое количество компонентов, но пару лет назад мною была придумана иная схема на этой микросхеме. В этой схеме количество комплектующих компонентов сведено к минимуму, но усилитель не потерял свои звуковые параметры. После разработки данной схемы, все свои усилители для маломощных колонок стал делать именно на этой схеме.

Схема представленного усилителя имеет широкий диапазон воспроизводимых частот, диапазон питающих напряжений от 4,5 до 18 вольт (типовое 12-14 вольт). Микросхему устанавливают на небольшой теплоотвод, поскольку максимальная мощность достигает до 10 Ватт.

Микросхема способна работать на нагрузку 2 Ом, это значит, что к выходу усилителя можно подключать 2 головки с сопротивлением 4 Ом.
Входной конденсатор можно заменить на любой другой, с емкостью от 0,01 до 4,7 мкФ (желательно от 0,1 до 0,47 мкФ), можно использовать как пленочные, так и керамические конденсаторы. Все остальные компоненты желательно не заменять.

Регулятор громкости от 10 до 47 кОм.
Выходная мощность микросхемы позволяет применять его в маломощных АС для ПК. Очень удобно использовать микросхему для автономных колонок к мобильному телефону и т.п.
Усилитель работает сразу после включения, в дополнительной наладке не нуждается. Советуется минус питания дополнительно подключить к теплоотводу. Все электролитические конденсаторы желательно использовать на 25 Вольт.

Вторая схема собрана на маломощных транзисторах, и больше подойдет в качестве усилителя для наушников.

Это наверное самая качественная схема такого рода, звук чистый, чувствуются весь частотный спектр. С хорошими наушниками, такое ощущение, что у вас полноценный сабвуфер.

Усилитель собран всего на 3-х транзисторах обратной проводимости, как самый дешевый вариант, были использованы транзисторы серии КТ315, но их выбор достаточно широк.

Усилитель может работать на низкоомную нагрузку, вплоть до 4-х Ом, что дает возможность, использовать схему для усиления сигнала плеера, радиоприемника и т.п. В качестве источника питания использована батарейка типа крона с напряжением 9 вольт.
В окончательном каскаде тоже применены транзисторы КТ315. Для повышения выходной мощности можно применить транзисторы КТ815, но тогда придется увеличить напряжение питания до 12 вольт. В этом случае мощность усилителя будет достигать до 1 Ватт. Выходной конденсатор может иметь емкость от 220 до 2200 мкФ.
Транзисторы в этой схеме не нагреваются, следовательно, какое-либо охлаждение не нужно. При использовании более мощных выходных транзисторов, возможно, понадобятся небольшие теплоотводы для каждого транзистора.

И наконец - третья схема. Представлен не менее простой, но проверенный вариант строения усилителя. Усилитель способен работать от пониженного напряжения до 5 вольт, при таком случае выходная мощность УМ будет не более 0,5 Вт, а максимальная мощность при питании 12 вольт достигает до 2-х Ватт.

Выходной каскад усилителя построен на отечественной комплементарной паре. Регулируют усилитель подбором резистора R2. Для этого желательно использовать подстроечный регулятор на 1кОм. Медленно вращаем регулятор до тех пор, пока ток покоя выходного каскада не будет 2-5 мА.

Усилитель не обладает высокой входной чувствительностью, поэтому желательно перед входом применить предварительный усилитель.

Немало важную роль в схеме играет диод, он тут для стабилизации режима выходного каскада.
Транзисторы выходного каскада можно заменить на любую комплементарную пару соответствующих параметров, например КТ816/817. Усилитель может питать маломощные автономные колонки с сопротивлением нагрузки 6-8 Ом.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Усилитель на микросхеме TDA2003
Аудио усилитель

TDA2003

1 В блокнот
С1 47 мкФ х 25В 1 В блокнот
С2 Конденсатор 100 нФ 1 Пленочный В блокнот
С3 Электролитический конденсатор 1 мкФ х 25В 1 В блокнот
С5 Электролитический конденсатор 470 мкФ х 16В 1 В блокнот
R1 Резистор

100 Ом

1 В блокнот
R2 Переменный резистор 50 кОм 1 От 10 кОм до 50 кОм В блокнот
Ls1 Динамическая головка 2-4 Ом 1 В блокнот
Усилитель на транзисторах схема №2
VT1-VT3 Биполярный транзистор

КТ315А

3 В блокнот
С1 Электролитический конденсатор 1 мкФ х 16В 1 В блокнот
С2, С3 Электролитический конденсатор 1000 мкФ х 16В 2 В блокнот
R1, R2 Резистор

100 кОм

2 В блокнот
R3 Резистор

47 кОм

1 В блокнот
R4 Резистор

1 кОм

1 В блокнот
R5 Переменный резистор 50 кОм 1 В блокнот
R6 Резистор

3 кОм

1 В блокнот
Динамическая головка 2-4 Ом 1 В блокнот
Усилитель на транзисторах схема №3
VT2 Биполярный транзистор

КТ315А

1 В блокнот
VT3 Биполярный транзистор

КТ361А

1 В блокнот
VT4 Биполярный транзистор

КТ815А

1 В блокнот
VT5 Биполярный транзистор

КТ816А

1 В блокнот
VD1 Диод

Д18

1 Или любой маломощный В блокнот
С1, С2, С5 Электролитический конденсатор 10 мкФ х 16В 3

УСИЛИТЕЛЬ МОЩНОСТИ ХОЛТОНА

СХЕМЫ ВАРИАНТОВ УСИЛИТЕЛЯ ХОЛТОНА

Информации по усилителю мощности Холтона в интернете довольно много, однако она разрознена. Не смотря на достаточность информации все равно у радиолюбителей возникает множество вопросов на тему сборки усилителя Холтона, хоть в его перовначальном виде, хоть в доработанных вариантах.
Именно по этой причине было решено собрать все в одном месте и дать наиболее исчерпывающую информацию по этому усилителю.
Для начала перевод статьи Эрика Холтона сделанный нынче покойным сайтом НЬЮТОНЛАБ:

Симметричный усилитель – усовершенствованная схема, опубликованная в июньском номере Cilicon Chip за 1994 год.
Каскад усиления напряжения
Этот каскад обеспечивает усиление по напряжению для предвыходного каскада, раскачивающего мощный выходной каскад до полной мощности.
Элементы T6, T7, T8, T9, R15, R14, R12, R13, C3, C7, C8 образуют второй диффкаскад усиления напряжения T7 и T9 . R15 обеспечивает ток покоя дифф каскада 8 мА.
Другие перечисленные компоненты образуют местную частотную коррекцию каскада.
Каскад стабилизации тока покоя.
Состоит из T10, R34, R37, R38, C12. Служит для стабилизации тока покоя выходного каскада от температуры и изменения питающего напряжения.
Каскад усиления тока.
Усиливает ток необходимый для работы на 8 и 4 омную нагрузку.2 омная нагрузка невозможна без использования дополнительных мощных транзисторов.
Блок питания для 400 ваттного усилителя.
Блок питания для этого усилителя мощности состоит из двух компонент.
1-ая: Тороидальный трансформатор с габаритной мощностью 625 ВА. Первичная обмотка, которого рассчитана на вашу сеть. Для Австралии 240 вольт, США 110, 115 вольт переменного напряжения и я думаю, что мой вариант (220 Вольт) пригоден для Европы и России (220-240 Вольт).
2х50 Вольт переменного напряжения для полной мощности.
Один диодный мост на 400 Вольт 35 Ампер.
Два резистора по 4,7 кОм 5 Ватт.
Конденсаторы 2х10000 мкФ на 100 Вольт, в идеале это должны быть конденсаторы по 40000 мкФ на каждое плечо выпрямителя.
Как подобрать МОСФЕТ транзисторы.
Когда используется этот тип МОСФЕТ-транзисторов в симметричном усилителе настоятельно рекомендую тщательную подборку выходных транзисторов. Для исключения протекания постоянного тока через нагрузку.
Резисторы 0,22 Ома образуют только локальную обратную связь и не защищают от тока.
Лучший метод, который я нашел для подбора транзисторов, это 150 Омный 1 Ваттный резистор и 15 Вольтный источник напряжения. Если Вы посмотрите на схему, то увидите как измеряется N-канальный и P- канальный транзистор.

На подключенном в схему транзисторе измеряется постоянное напряжение. Оно находится в пределах 3,8-4,2 Вольт. Просто подберите транзисторы в группу с различием в+-100 мВольт.
Пожалуйста, не перепутайте схему подключения P-канальног и N-канального транзистора.
Сборка печатной платы.
При первом взгляде на печатную плату просмотрите, все ли отверстия просверлены, и диаметры отверстий соответствуют диаметрам ножек деталей. Если что-то не просверлено – то, пользуясь, приведенными ниже, стандартными диаметрами, просверлите недостающие отверстия.
1/4 ваттный резистор = от 0,7 мм до 0,8 мм
1-ваттный резистор = 1 мм
1/4 диод Зеннера и нормальный мощный диод = 0,8 мм
Малосигнальные транзисторы, такие как BC546, в корпусе TO-92 =0,6 мм
Средне сигнальные транзисторы, такие как MJE340, в корпусе ТО-126 = 1,0 мм
Мощные выходные девайсы IRFP9240 устанавливаются в 2,5 мм отверстия.

Сборка начинается с установки 1/4 ваттных резисторов, затем устанавливаются мощные резисторы, диоды, конденсаторы и малосигнальные транзисторы. Следует быть внимательным при установке полярных элементов. Неправильное подключение может привести к неработоспособности устройства или выходу одного, или более элементов, при включении схемы.
Выходные транзисторы и транзистор Q10(BD139) – устанавливаются позже.
Предпусковой тест.
Допустим, что вы установили все элементы, кроме выходных транзисторов и Q10(BD139). Подсоедините на временные проводники транзистор Q10. Надо быть внимательным, чтобы не поменять местами эмитер-коллектор-база на база-коллектор-эмитер транзистора BD139.
Это нужно, чтобы во время тестирования усилитель работал должным образом. Также следует установить 10-ти Омный резистор, параллельно ZD3, со стороны проводников печатной платы. Для чего это нужно? Для того чтобы подключить резистор R11 обратной связи к буферному каскаду. Исключая выходные каскады получаем очень низкомощный усилитель мощности и можем произвести тесты без опасности вывести из строя выходные каскады. Теперь, когда подключен резистор обратной связи, пришла пора подключать питание +-70 вольт и включать.
Пятиватные резисторы по 4.7 кОм при этом уже должны быть установленными параллельно ёмкостям блока питания. Убедитесь в отсутствии дыма от схемы, ставьте прибор на измерение напряжения.
Измерьте следующие позиции по схеме, если напряжения находятся в пределах 10- ти процентов – то можно быть уверенным, что усилитель в порядке.
Если измерения закончены, то гасите питание, демонтируйте 10-ти Омный резистор.
R3~1,6 В
R5~1,6 В
R15~1,0 В
R12~500 мВ
R13~500 мВ
R8~14,6 В
ZD1~15 В
Напряжение на R11 должно быть близким к 0 В, в пределах 100 мВ.
Завершение сборки модуля.
Теперь мы можем приступить к установке выходных транзисторов на плату. Этот шаг надо делать только после Как подобрать МОСФЕТ транзисторы. Пред установкой мощных выходных транзисторов в плату впаиваются 0,22 Ом резисторы.
Формуем (если требуется) выводы N-канальных транзисторов, устанавливаем их в плату, обрезаем выступающие выводы. Так - же следует сделать и с P-канальными транзисторами.
Транзисторы можно устанавливать тремя разными способами:
1. Стоя, без формовки выводов, сверху.
2. Параллельно плате, сверху.
3. Параллельно плате, снизу.
Для крепления понадобятся винты М3х10-16 9 шт., гроверные шайбы – д3, шайбы д3 и гайки М3 9 шт.(7 комплектов для крепления мощных транзисторов и Q10, два для платы).
Устанавливать выходные транзисторы на радиатор следует через изолирующие прокладки с использованием теплопроводящей пасты.
Завершив монтаж всех элементов, внимательно просмотрите модуль, все ли компоненты впаяны, правильно ли они установлены. Только когда Вы убедитесь, что всё сделано правильно и все детали стоят на своих местах можно подключать питание. Транзистор Q10 на гибких проводниках, устанавливается на радиатор рядом с выходными транзисторами.
Теперь мы имеем готовый, проверенный модуль, тестированный на ошибки усилитель напряжения и буферный каскад, и вы уверены, что они работают нормально.
Пришло время заворачивать винты и гайки в радиатор. Не забыв, при этом, про теплопроводный изолятор. Тепловое сопротивление в этом случае будет около 0,5 градуса на ватт или менее.
Тестирование модуля.
Мы достигли завершающей стадии – тестирования полного усилителя мощности.
Нам надо совершить ещё пять шагов:
1. Проверить, нет ли утечки с выводов транзисторов на радиатор.
2. Проверить, что полярность блока питания соответствует полярности на усилителе.
3. Движок резистора P1 нужно переместить до нуля, измеряется это дело между базовым и коллекторным выводом Q10 BD139.
4. Подключив проводами, блок питания, проверьте наличие предохранителей 5А в их гнездах.
5. Подключить вольтметр постоянного напряжения к выходу усилителя.
Для полного счастья не хватает только включить блок питания, сделайте это.
Посмотрите на вольтметр. Вы увидите напряжение на выходе от 1-го до 50-ти мВ, если это не так, то выключите питание усилителя и повторите проверку.
Вооружитесь маленькой фигурной отвёрткой. С помощью крокодилов закрепите щупы прибора на выводах одного из мощных резисторов 0,22 Ом. Медленно вращая движок резистора P1, установите на резисторе 0,22 Ом 18 мВ, это и будет установка тока в 100 мА на один транзистор.
Теперь проверьте напряжение на всех остальных резисторах, выберите один на котором напряжение наибольшее. Настройте резистором P1 на нем напряжение 18 мВ.
Теперь подключите сигналгенератор на вход и осцилограф на выход. Убедитесь в том, что форма сигнала свободна от шума и искажений.
Если у вас нет этих приборов, подключите нагрузку и получайте хорошее качество. Звук должен быть чистым и динамичным.
Конфигурация закончена.
С лучшими пожеланиями:
Antony Eric Holton


УВЕЛИЧИТЬ

К сожалению в статье не приведен (или не сохранился) оригинальный чертеж печатной платы, однако есть чертеж расположения деталей на оригинальном усилителе Холтона, а развести дорожки большого труда не составит:

Что-то похожее на именно эту плату есть ниже.

Принципиальная схема усилителя приведена на рисунке ниже. Это почти схема Энтони Холтона, но только ПОЧТИ. В предлагаемом Вам усилители используются более скоростные транзисторы и несколько изменены номиналы, что позволило хоть и немного, но все же улучшить звучание и без того хорошо играющего усилителя.
Широкий диапазон питающих напряжений делает возможным построение усилителя мощностью от 200 до 800 Вт, причем во всем диапазоне мощностей у УМЗЧ коф. нелинейных искажения не превышает 0,08% на частоте 18 кГц при выходной мощности 700 Вт, что позволяет отнести этот усилитель к разряду Hi-Fi.

Замена транзисторов в усилителе напряжения вызвана прежде всего желанием увеличить надежность, да и используемые транзисторы в оригинальном усилителе Холтона мягко говря несколько мутноваты, не смотря на маститых производителей не указаны ни коф усиления, ни максимальная частота. Только максимальное напряжение в 300 В и ток в 0,5 А, ну и максимальная расеиваемая коллектором мощность в 20 Вт.
Однако есть транзисторы с нормируемыми параметрами, которые можно использовать в этом усилителе и которые уже прошли проверку не на одной тысячи усилителей. Правда таких высоковольтных нет, но напряжение коллектор - эмиттер в 300 В в этом усилителе и не нужно, поскольку подача напряжения питания более чем ±90 В уже может спровоцировать пробой оконечного каскада, имеющего макисмальное напряжение в 200 В.
А учитывая то, что данная схема позволят легко адаптироваться и меньшему напряжению питания перечень возможных замен расширяется, причем гарантированно не ухудшается качество усилителя.
Используя более мощные транзисторы так же отпадает необходимость компенсатора емкости затворов, который Холтон предлагал использовать при установки более 5-6 пар оконечных транзисторов - ток коллектора последнего каскада усилителя напряжения в 1,5 А вполне достаточен для зарядки-разрядки десяти пар оконечников даже при уменьшении сопротивлений в цепях затвора до 68 Ом. Компенсатор же в добавок к тому, что снижал выходную мощность, так еще и довольно существенно уменьшал устойчивость усилителя, что в свою очередь заставляло увеличвать успокаивающие конденсаторы вплоть до влияние в звуковом диапазоне - на частотатх выше 10 кГц уже наблюдался спад в 3 дБ

Ниже приведена таблица возможных замен транзисторов УНа с поправкой на напряжение питания усилителя

КОМПЛЕМЕНТАРНАЯ
ПАРА

НАПР-НИЕ
К-Э, В

ТОК КОЛ-РА,
А

МАКС
ЧАСТОТА, МГц

КОФ
УСИЛЕНИЯ

МАКС
НАПР-НИЕ
ПИТАНИЯ
УМЗЧ, В

МАКС
МОЩНОСТЬ
УМЗЧ
НА 4 ОМА, Вт

Так же в предлагаемом варианте сильно изменены номиналы некоторых резисторов, что позволило добиться более приятного и естественного звучания, по сравнению с оригинальным усилителем Холтона. Прежде всего уменьшены номиналы резисторов в эмиттерных цепях усилителя напряжения, что увелило протекающий через них ток, увелило нагрев, но уменьшило изменение тока во всем диапазоне питающих напряжений, что существенно снизило уровень THD.
Если есть возможность подобрать транзисторы 2N5551 по коф усиления, то резисторы в эмиттерах дифкаскада можно уменьшить до 10 Ом - это так же приводит к снижению THD.
Возвращаясь к удаленным резисторам по питанию усилителя напряжения. В оригинальной схеме фильтрующие конденсаторы имеют емкость всего 100 мкФ, в предлагаемом варианте используются конденсаторы на 470 мкФ. Благодаря VD4 и VD5 запасенная в конденсаторах энергия не будет уходить в силовую часть в случае краткосрочных провалов напряжения питания, что благоприятно сказывается на режимах работы транзисторов усилителя напряжения.
Разновидностей схемотехники, используемой Холтоном довольно много, например серийно выпускаемый усилитель "STUDIO 350", использующий биполярные транзисторы в качестве оконечного каскада:

Однако изменение некоторых узлов и режимов работы позволило существенно улучшить качество звучания оригинального усилителя Холтона, а его доработка максимально приблизила данный усилитель к категории ХАЙ-ЭНДа.
На последок остается пояснить почему усилитель Холтона называют симметричным, ведь на симметричные усилители, например ЛАНЗАР , ВП или ЛИНКС он не похож. Симметрия данного усилителя мощности заключается не в схемотехнике плеч отрицательного и положительного плеча, а в способе организации отрицательной обратной связи - и входной сигнал и сигнал с выхода, который используется для ООС, проходят одинаковое количество каскадов, собраных по одинаковой схемотехнике.

ПЕЧАТНЫЕ ПЛАТЫ ДЛЯ УСИЛИТЕЛЯ ХОЛТОНА

Далее собраны чертежи печатных плат усилителя Холтона, выложенные на форумах "ПАЯЛЬНИК" и "НЕМНОГО ЗВУКОТЕХНИКИ", ну и конечно же собственные варианты. Все файлы запакованы WINRAR и имеют формат LAY 5, для скачивания нажмите понравившуюся картинку .
Открывает галлерею печатных плат чертеж с двумя парами оконечных транзисторов. В данном варианте радиаторы для транзисторов раздельные, плата имеет размер 80 х 90 мм:

Еще один вариант печатной платы с двумя парами в оконечном каскаде, но уже не IRFP240 - IRFP9240, а IRF640 - IRF9640. Плата выполнена под SMD компоненты и имеет сразу два канала. Размер платы 158 х 73 мм:

Следующий вариант сильно напоминает классическое расположение деталей, как в оригинальном усилителе Холтона. Плата расчитана под установку двух пар в окнечном каскаде и общем радиаторе для транзисторов УНа. Размер 124 х 89 мм:

Еще один вариант с двумя парами на выходе, размер 111 х 39мм, ВСЕ транзисторы УНа на одном радиаторе:

Следующий вариант использует 4 пары оконечных транзисторов и способен отдать в нагрузку до 400 Вт. Размер платы 182 х 100 мм:

Монстр с десятью парами и установленным компенсатором имеет размер 280 х 120 мм, вероятней всего под нагрузку 2 Ома:

Универсальная плата для усилителя Холтона, позволяющая наращивать количество пар транзисторов оконечного каскада. Чертеж многостраничный , плата двухярусная, внешний вид усилителя на 200 Вт приведен ниже, установлены транзисторы 2SD669A и 2SB649A:

В связи с отказом IR от производства IRFP240 - IRFP9240 качество транзисторов заметно ухудшилось, поэтому было решено переработать усилитель Холтона под универсальный выходной каскад на транзисторах 2SA1943 - 2SC5200, к тому же имеющий защиту от перегрузки. В результате получилась вот такая конструкция:

Данная плата так же имеет возможность наращивания выходных транзисторов, а на плате усилителя напряжения имеется возможность подключения отдельного источника питания, только для УНа:

Более подробно об этой схемотехнике написано . Или же можно посмотреть видео:

Осталось лишь сделать плату, запаять детали и перед включением ознакомится с информацией ниже.

НАЛАДКА УСИЛИТЕЛЯ ХОЛТОНА

Прежде чем приступить к наладке усилителя мощности Эрика Холтона следует более внимательно изучить схему. На странице с описанием схемы уже давались некоторые пояснения и приводилось несколько схем. На этой странице рассмотрм еще одну схему этого же усилителя, но уже выполненную в симмуляторе, что позволит проверить множество параметров, жестко поэксперементировать с элементами, выявив последствия ошибок при монтаже и использовании не качественной элементной базы.
Итак, подопытная схема усилителя Холтона имеет вид:

Данная схема содержит всего две пары оконечных транзисторов лишь для экспериментов в симмуляторе и более компактного отображения на странице. В реальности количество оконечных тразисторов напрямую зависит от требуемой выходной мощности, не зависимо от сопротивления нагрузки - одна пара транзисторов IRFP240 - IRFP9240 безболезненно способна отдать в нагрузку порядка 100 Вт, следовательно для получения 200 Вт потребуется две пары, а для получения 800 Вт уже необходимо 8 пар в оконечном каскаде. Для тех, кто не очень дружит с калькулятором приведена таблица зависимости выходной мощности от напряжения питания и необходимое количество пар транзисторов в оконечном каскаде:

ПАРАМЕТР

НА НАГРУЗКУ

2 Ома
(мост на 4 Ома)

Максимальное напряжение питания, ± В
Максимальная выходная мощность, Вт при искажениях до 1% и напряжении питания:

В скобках указан требуемое количество пар оконечных транзисторов.

±30 В
±35 В
±40 В
±45 В
±50 В
±55 В
±60 В
±65 В
±75 В
±85 В

НЕ ВКЛЮЧАТЬ!!!

В зависимости от напряжения питания меняются и напряжения в контрольных точках. Приводимая ниже карта напряжений позволит орентироваться не только в режимах работы, но и в поиске неисправности усилителя Холтона:

КАРТЫ НАПРЯЖЕНИЙ

НАПРЯЖЕНИЕ ПИТАНИЯ

НАПРЯЖЕНИЕ

±40 В
±50 В
±60 В
±70 В
±80 В
±90 В

Прежде всего следует обратить внимание на номинал резисторов R3, R7 и R8. Именно эти резисторы задают токовые режимы работы первых каскадов, которые непосредственно влияют на работу всех следующих.
Ни для кого не секрет, что при одном и том же сопротивлении и разном напряжении ток через сопротивление будет изменяться. Собственно этим и объясняется различие номиналов сопротивлений R3, R7 и R8. Конечно же номиналы, приведенные в оригинальной схеме сохранят работоспособность усилителя во всем диапазоне питающих напряжений, однако их изменение позволит значительно уменьшить уровень THD. А именно этот параметр зачастую является главным при выборе схемы.
Кроме этого изменение номиналов изменяет и рассеиваемую мощность транзисторов Q3 и Q4, уменьшая их саморазогрев и улучшая термостабильность усилителя. Если делать усилитель для себя, а не для того, чтобы бухало, то имеет смысл обратить внимание и на этот фактор. Даже при измененных резисторах верхние транзисторы греются:
Саморазогрев большого влияния на режимы работы каскадов не оказывает - генератор тока на транзисторе Q2 удерживает ток в заданном диапазоне и ток следующих каскадов почти не изменяется. Тем не менее если есть возможность снизить нагрев, то почему бы этого не сделать?
По сути диф каскад используется для получения качественной отрицательнйо обратной связи и усиления во входнйо сигнал он не вносит. Так же не усиливают напряжение и транзисторы Q3 и Q4 - они формируют смещение для следующего каскада.
Основное увеличение амплитуды входного сигнала происходит на транзисторе Q11.
Так же на уровень THD оказывает влияние собственного коф усиления, поэтому при постройке усилителя с выходной мощностью выше 500 Вт может встать вопрос об использовании предварительного усилителя или введения в усилитель буферного ОУ. Для примера возьмем собственный коф усиления равным 36 дБ. Для получения на выходе усилителя амплитуды напряжения в 63 В нам потребуется подать на вход 1 вольт. Уровень THD в этом случае составит более 0,07%:

При собственном коф усиления 30 дБ и выходном напряжении 63 В уровень THD снизился практически в 2 раза, правда на вход уже потребовалось подать 2 В:

Коф усиления зависит от отношения номиналов резисторов R14 и R11 и примерно может быть вычисленно по формуле Kу = (R14 / R11) + 1 .

На приведенном ниже рисунке показана форма и величина напряжений на схеме:

Синяя линия - напряжение на базе Q1 ; Красная - напряжение на коллеторе Q3 ; Зеленая - напряжение на коллекторе Q11 .
Вывод из этого сделать не сложно - транзистор Q11 должен иметь максимально возможный коф усиления, а поскольку Q6 работает с ним в диф каскаде, то его коф усиления должен быть равным коф усиления Q11. От величины коф усиления транзистора на прямую зависит какой ток потребуется для его открытия, т.е. как сильно будет нагружаться предыдущий каскад, от нагрузки которого тоже зависит уровень THD - чем меньше будет изменяеться протекающий через каскад ток, тем меньше будет THD.
Для подборки транзисторов можно конечно воспользоваться имеющимся на большинстве цифровых мультиметров гнездом, однако реальный параметр кофф усиления на этом гнезде можно получить лишь для транзисторов малой мощности. Для транзисторов средней и большой мощности можно лишь выбрать одинаковые с максимальными параметрами. О причинах такого безобразия можно почитать или посмотрель .
Завершая резистивную сагу усилителя напряжения стоит упомянуть о резисторах R4 и R9. Как уже писалось на странице с описанием схемы номинал этих резисторов довольно сильно влияют на уровень THD. Для примера возьмем номинал этих резисторов равных 100 Ом, как в оригинальной схеме и просчитаем уровень THD:

Ну в принципе уровень THD в 0,065 % даже меньше заявленных на большинстве сайтов 0,08%, однако не поленимся при покупке деталей и выберем транзисторы 2N5551 с максимально возможным и ОДИНАКОВЫМ коф усиления. Это даст повод снизить R4 и R9 до 22 Ом и мы получим следующий уровень THD:

Масштаб сетки сохранен намеренно, чтобы дать прочувствовать что получается при смене двух номиналов, но предварительной отбраковке элементной базы - THD снизился до велечины в 0,023 % и это при выходной амплитуде 63 В и собственном коф усиления 30 дБ .
Теперь собственно осталось поиграться номиналами резисторов оконечного каскада, а именно с резисторами, установленными на затворы оконечных транзисторов. 100 Ом... С одной строны вроде не много, однако давая поправку на то, что емкость затвора составляет 1200-1300 пкФ имеет смысл задуматься и смоделировать примерно такую схему:

На этой схеме исключен усилитель напряжения, а вместо него используются два генератора прямоугольных импульсов V1 и V2, работающих в противофазе. Таким образом V1 управляет положительным плечом оконечного каскада, а V2 - отрицательным. Источник постоянного напряжения V3 обеспечивает ток покоя оконечного каскада. У нас получается проверка параметров ТОЛЬКО оконечного каскада и мы посмотрим что творится на выходе "усилителя" и на его входе, если в затворных цепях стоят резисторы на 100 Ом:

Синяя линия - напряжение на правом выводе R1, т.е. напряжение приходящее с УНа. Красной линией обозначено напряжение подающееся на нагрузку. Не нужно обладать хорошим зрением, чтобы увидеть выбросы и завал фронтов и спадов прямоуголки. Если кто не пересчитал, то это частота 16 кГц.
Теперь снизим в два раза номинал резисторов в затворах и получим следующее:

Какую форму приобретет прямоуголка при использовании резисторов на 470 Ом, установленных в оригинальном усилителе догодаться не трудно, поэтому рисунок прилагать не буду. Почему используются резисторы на 100 Ом, а не меньше? Ну давайте попробуем разобраться...
Прежде всего транзисторы IRFP240 - IRFP9240 разрабатывались отнюдь не для усилителей мощности ЗЧ и такого параметра как коф усиления у них не нормирован. Однако подобрать одинаковые транзисторы, пока их выпускала International Rectifier (IR) было совсем не трудно - из одной нормоупаковки отбраковывался один-два, а то и не одного транзистора, а вот с транзисторами от Vishay Siliconix что-то не то - они явно не для усилителей мощности.

Можно конечно обратиться в "звуковым" полевикам, однако их цена кусается и довольно сильно, поэтому вернемся к резисторам в затворах и посмотрим какой собственно ток отдает УН на перезарядку этих самых затворов. Для этого возьмем модель полноценного усилителя с восьмью парами оконечников, а в качестве измерительного инструмента возьмем падение напряжения на дополнительных резисторах R19 и R20 (выделены зеленым):

На частоте 16 кГц и выходном напряжении 63 В падение на сопротивлении 1 Ом составило 0,025 В, что соответствует протекающему через резистор току в 0,025 А (зеленый фон). При выходной мощности близкой к клиппингу (см внизу страницы) падение на этом же резисторе составляет уже 0,033 В, т.е. 0,033 А требуется на перезарядку восьми пар затворов оконечного каскада. Учитывая то, что в оригинальном усилителе Холтона используются транзисторы KSE340 - KSE350 с максимальным током в 0,5 А, то становится понятно почему резисторы должны быть не менее 100 Ом.
Однако выше есть таблица возможных замен и там у ВСЕХ транзисторов ток коллетора не менее 1 А, что позволяет отказаться от так называемого компенсатора емкости затворов, предложенным Холтоном, а подключать затворы непосредственно к выходу усилителя напряжения.
Номиналы затворных резисторов можно уменьшить и в случае использования меньшего количества пар оконечных транзисторов. Номинал можно вычислить по пропорции исходя из того, что для восьми пар необходимо 100 Ом, а для 4 пар уже 50 Ом будет вполне достаточно, даже при использовании в усилителе KSE340 - KSE350. Ниже 15 Ом резисторы в затворах оконечников лучше не использовать - они кроме ограничения тока перезарядки еще немного и разброс параметров компенсируют.

Итак, с номиналами разобрались, монтрировали и пропаяли все элементы схемы, согласно своим понятиям, можно приступать к первому включению. Однако перед этим необходимо исключить из схемы оконечные транзисторы, а вместо них, временно запаять постоянные резисторы мощностью 0,5 - 1 Вт и споротивлением 10 - 15 Ом. Подобная мера диктуется стоимостью оконечных транзисторов - если все элементы на своих местах и они исправны, а на плате нет не запланированных перемычек, образующихся от не аккуратной пайки, то в этом варианте просто произойдет проверка работоспособности усилителя напряжения. Если же на плате есть сопли, попутаны местами элементы, или же они не исправны в следствии перегрева при монтаже или изначально бракованные, то силовая часть, способная выйти из строя останется целой.
В конечном итоге схема усилителя Холтона для первого включения выглядит так, где R31 и R32 имитируют оконечный каскад и замыкают цепь ООС, чтобы УН вывести на рабочий режим:

Напряжения на реальной плате не должны отличаться не более чем на 2% от приведенных на картах напряжений. Кстати сказать, в предлагаемом варианте схемы усилителя отсутствуют резисторы, включенные последовательно диодам D4 и D7. Сделанно это для получения хоть небольшого, но все же прироста выходной мощности. Особого значения эти резисторы при работе усилителя не имеют, а вот по количеству дыма от них, в случае ошибок монтажа, можно орентироваться о степени ошибки. Поэтому настоятельно рекомендуется, в целях экономии бюджета, последовательно с диодами D4 и D7 включить резисторы сопротивлением 10-15 Ом. После проверки работоспососбности их можно удалить.
Перед первым включение ОБЯЗАТЕЛЬНО подстроечный резистор R16 и на модели, и на реальной схеме, должен быть установлен в положение МАСКИМАЛЬНОГО сопротивления. На реальной схеме. В этом случае ток покоя оконечных транзисторов минимально возможный.

Теперь вернемся к реальной схеме:

Сборка С1-С3 и С7-С9 это аналоги неполярного конденсатора большой емкости, электролиты лучше использовать серии WL или WZ, так называемые компьютерные, имеющие серебристую или золотистую маркировку. Если есть возможность, то номиналы электролитов лучше удвоить - АЧХ в области НЧ получается ровнее, хотя и в этом услае остается в пределах 1,5 Дб.
Конденсаторы С14, С15, С16 и С17 на схеме 47 пкФ. Использовались эти номиналы для увеличения устойчивости, хотя при собственном коф усиления до 27 дБ усилитель вполне устойчив и при установке конеденсаторов по 22 пкФ.
После проверки работоспособности усилителя напряжения в плату монтируют оконечный каскад, устанавливают его на радиатор и производят регулировку тока покоя. С конечным каскадом перове включение лучше делать либо через токоограничивающие резисторы, установленные в каждое плечо питания, либо последовательно с первичной обмоткой трансформатора включить лампу накаливания мощностью 40-60 Вт. Если напряжения в контрольных точках соответствуют расчетным, то токоограничивающие цепи исключают, разумеется выключив блок питания и дав возможность разрядиться конденсаторам фильтров питания, а затем уже регулируеют ток покоя.
Довольно часто для усилителя Холтона рекомендуется ток покоя в 100 мА, однако какой либо разницы в качестве звучания при токе покоя от 45 мА до 150 мА выявить на слух не удалось, поэтому лучше использовать золотую середину - ток покоя в пределах 50-60 мА, тем более симмулятор показывает, что при этом токе покоя минимальный уровень THD.
Ну вот собственно и весь усилитель, под занавес более раняя версия рекомендаций по сборке двухэтажного варианта.

НЕСКОЛЬКО СЛОВ О ТОМ, КАК ПРАВИЛЬНО СОБРАТЬ УСИЛИТЕЛЬ
Вариант описания старой статьи.

Для примера рассмотрим модуль с двумя парами оконечных транзисторов, как самый популярный. Технология сборки остальных вариантов отличается лишь количеством применяемого крепежа. Для монтажа усилителя необходимо проверить перекушены ли ножки "меченных" маркером резисторов (поз.1) и распаять ножки-перемычки соединяющие "заднюю" часть конструкции (поз.2 рис. 3).


Рисуонок 3.

Кстати сказать, внешний вид платы предварительного усиления для наборов О-7 и О-8 имеет несколько иной вид, поскольку используются более высоковольтные транзисторы (рис.4).


Рисунок 4.

После распайки верхнюю плату следует отогнуть и при помощи винтов прикрутить нижнюю плату к радиатору при помощи винтов М-3. Под транзисторы выходного каскада и транзистор стабилизации тока покоя необходимо подложить слюдяные прокладки. Так же следует установить теплоотвод на транзисторы истоников тока и предпоследних каскадов на плате предварительного усилителя (поз 1 и 2 на рис.5). Размеры между отверстиями на плате предварительного каскада подобраны таким образом, что туда прекрасно становится половинка от радиатора процессора S-370, в которой необходимо лишь просверлить отверстия на 2,5мм и нарезать резьбу М-3. Если же ничего похоже под рукой нет и взять не где, то можно использовать кусок аллюминиевого уголка (поз.1 на рис.6 установлен уголок от аллюминиевого карниза, на который шторы вешают) или швелерка.


Рисунок 5.

Рисунок 6.

Затем верхняя плата выгинается в исходное положение и запаиваются ножки-перемычки 2 (рис.6) и еще раз проверяется перекушены ли выводы резисторов 3. Пожалуй стоит пояснить что это за резисторы такие...
При запайке перекушенного места этих резистров плату предварительного каскада можно включать без оконечного каскада, что очень удобно при настройке и ремонте усилителя. Т.е питание подается непосредственно на платц предварительного усилителя и в случае неисправности на плате предварительного усиления оконечным транзисторам ничего не угрожает.
После установки теплоотводов следует подать напряжение питания и подстроечным резистором выставить ток покоя оконечного каскада. Для этого меряется напряжение на токоограничивающих резисторах 0,22 Ома и вращением движка добиваются показаний милливольтметра 0,022 В, что будет соответствовать току 100 мА (разумеется вход на "землю"). На этом регулировку можно считать оконченной и Вам остается насладится приятным звуком этого усилителя.
Коф усиления усилителя можно расчитать по формуле R21+1/R6. Получившийся результат показывает во сколько раз входной сигнал будет усилен. Для получения коф усиления в дБ необходимо использовать формулу Кдб= 20 х lg Кр, где Клб - коф усиления в дБ, Кр - коф усиления в разах, lg - десятичный логарифм, 20 - множитель. Для примера равенства коф усиления в разах и дБ приведены в таблице.


Рисунок 7.

На рисунке 8 приведена схема подключения для модуля О-2, для остальных модулей подключение аналогичное.

Клиппинг на экране осциллографа.

Вместо чистой гармонической волны наблюдается обрезка синусоиды сверху и снизу - верхушки плоские вместо закруглённых.

Подробно о том, какой мощности нужен блок питания для усилителя мощности можно помотреть на видео ниже. Для примера взят усилитель STONECOLD, однако данный замер дает понимание тог, что мощность сетевого трансформатора может быть меньше мощности усилителя примерно на 30%.

Редакция сайта «Две Схемы» представляет простой, но качественный усилитель НЧ на транзисторах MOSFET. Его схема должна быть хорошо известна радиолюбителям аудиофилам, так как ей уже лет 20. Схема является разработкой знаменитого Энтони Холтона, поэтому её иногда так и называют — УНЧ Holton. Система усиления звука имеет низкие гармонические искажения, не превышающие 0,1%, при мощности на нагрузку порядка 100 Ватт.

Данный усилитель является альтернативой для популярных усилителей серии TDA и подобных попсовых, ведь при чуть большей стоимости можно получить усилитель с явно лучшими характеристиками.

Большим преимуществом системы является простая конструкция и выходной каскад, состоящий из 2-х недорогих МОП-транзисторов. Усилитель может работать с динамиками сопротивлением как 4, так и 8 Ом. Единственной настройкой, которую необходимо выполнить во время запуска — будет установка значения тока покоя выходных транзисторов.

Принципиальная схема УМЗЧ Holton


Усилитель Холтон на MOSFET — схема

Схема является классическим двухступенчатым усилителем, он состоит из дифференциального входного усилителя и симметричного усилителя мощности, в котором работает одна пара силовых транзисторов. Схема системы представлена выше.

Печатная плата


Печатная плата УНЧ — готовый вид

Вот архив с PDF файлами печатной платы — .

Принцип работы усилителя

Транзисторы Т4 (BC546) и T5 (BC546) работают в конфигурации дифференциального усилителя и рассчитаны на питание от источника тока, построенного на основе транзисторов T7 (BC546), T10 (BC546) и резисторах R18 (22 ком), R20 (680 Ом) и R12 (22 ком). Входной сигнал подается на два фильтра: нижних частот, построенный из элементов R6 (470 Ом) и C6 (1 нф) — он ограничивает ВЧ компоненты сигнала и полосовой фильтр, состоящий из C5 (1 мкф), R6 и R10 (47 ком), ограничивающий составляющие сигнала на инфранизких частотах.

Нагрузкой дифференциального усилителя являются резисторы R2 (4,7 ком) и R3 (4,7 ком). Транзисторы T1 (MJE350) и T2 (MJE350) представляют собой еще один каскад усиления, а его нагрузкой являются транзисторы Т8 (MJE340), T9 (MJE340) и T6 (BD139).

Конденсаторы C3 (33 пф) и C4 (33 пф) противодействуют возбуждению усилителя. Конденсатор C8 (10 нф) включенный параллельно R13 (10 ком/1 В), улучшает переходную характеристику УНЧ, что имеет значение для быстро нарастающих входных сигналов.

Транзистор T6 вместе с элементами R9 (4,7 ком), R15 (680 Ом), R16 (82 Ом) и PR1 (5 ком) позволяет установить правильную полярность выходных каскадов усилителя в состоянии покоя. С помощью потенциометра необходимо установить ток покоя выходных транзисторов в пределах 90-110 мА, что соответствует падению напряжения на R8 (0,22 Ом/5 Вт) и R17 (0,22 Ом/5 Вт) в пределах 20-25 мВ. Общее потребление тока в режиме покоя усилителя должен быть в районе 130 мА.

Выходными элементами усилителя являются МОП-транзисторы T3 (IRFP240) и T11 (IRFP9240). Транзисторы эти устанавливаются как повторитель напряжения с большим максимальным выходным током, таким образом, первые 2 каскада должны раскачать достаточно большую амплитуду для выходного сигнала.

Резисторы R8 и R17 были применены, в основном, для быстрого измерения тока покоя транзисторов усилителя мощности без вмешательства в схему. Могут они также пригодиться в случае расширения системы на еще одну пару силовых транзисторов, из-за различий в сопротивлении открытых каналов транзисторов.

Резисторы R5 (470 Ом) и R19 (470 Ом) ограничивают скорость зарядки емкости проходных транзисторов, а, следовательно, ограничивают частотный диапазон усилителя. Диоды D1-D2 (BZX85-C12V) защищают мощные транзисторы. С ними напряжение при запуске относительно источников питания у транзисторов не должно быть больше 12 В.

На плате усилителя предусмотрены места для конденсаторов фильтра питания С2 (4700 мкф/50 в) и C13 (4700 мкф/50 в).


Самодельный транзисторный УНЧ на МОСФЕТ

Управление питается через дополнительный RC фильтр, построенный на элементах R1 (100 Ом/1 В), С1 (220 мкф/50 в) и R23 (100 Ом/1 В) и C12 (220 мкф/50 в).

Источник питания для УМЗЧ

Схема усилителя обеспечивает мощность, которая достигает реальных 100 Вт (эффективное синусоидальная), при входном напряжении в районе 600 мВ и сопротивлением нагрузки 4 Ома.


Усилитель Холтон на плате с деталями

Рекомендуемый трансформатор — тороид 200 Вт с напряжением 2х24 В. После выпрямления и сглаживания должно получиться двух полярное питание усилители мощности в районе +/-33 Вольт. Представленная здесь конструкция является модулем монофонического усилителя с очень хорошими параметрами, построенного на транзисторах MOSFET, который можно использовать как отдельный блок или в составе .

Представляем схему усилителя повышенной мощности, собранного на импортных транзисторах 2SC5200 и 2SA1943. При указанном питании схема развивает мощность 500 ватт на нагрузку 4 ома. Возможно также повысить мощность поднятием питания УМЗЧ.

Автор схемы предлагает два варианта схемы. Первая схема на 300 ватт - ее мы рассмотрим в других статьях, а пока остановимся на второй схеме усилителя, мощность которой при питании 100 вольт достигает до киловатта!

Технические параметры усилителя: Выходная мощность: 500Вт/4Ом, 250Вт/8Ом. Минимальное сопротивление динамика: 2 Ома. Частотный диапазон: 10-20000Гц/-3dB. Общие гармонические искажения, шум, менее 0.06%. Максимально допустимое напряжение УНЧ: 100В.

В выходных каскадах рекомендовано применить высококачественные биполярные транзисторы серии 2SC5200 и 2SA1943 производства Toshiba. Для такого мощного усилителя нужны мощные теплоотводы, они расположены по бокам платы, имеют высоту 70 мм, ширину 45 мм и длиной 270мм.

Ток покоя транзисторов регулируется переменным резистором 2.2кОм. Для начала следует подключить только один из выходных каскадов, после того, как усилитель заработал, уже можно припаять все остальные транзисторы Ток покоя транзисторов устанавливается 30 мА для каждого из транзисторов выходного каскада.

Для питания такого устройства нужен мощный источник не менее 1 киловатт (1000 ватт). Как вы поняли, такой усилитель предназначен для концертных динамиков, но возможно найдутся меломаны, которые захотят питать киловаттовый сабвуфер дома и устроить локальное землетрясение, а такая мощность вполне способна на это!

Этот качественный усилитель полностью собран на транзисторной основе. В выходном каскаде использованы мощные биполярные транзисторы, которые обеспечивают на выходе мощность до 150 ватт нагрузку 4 ом. Основные характеристики звукового усилителя представлены ниже:

Напр.пит.,В - +/-35
- Ток потреб. в хол.реж.- 80ма
- Вх.сопр.,кОм - 24
- Чувств.,В - 1,25
- Вых. мощн.(КГ=0,03%),Вт - 85
- Диап. частот,Гц - 10...35000
- Шум - 75Дб

Данный тип усилителей может работать на нагрузку 8 ом и обеспечивать ту же мощность, что и с нагрузкой в 4 ом, для этого нужно поднять напряжения питание до +/-42 В, главное не повышать больше указанного номинала, иначе транзисторы выходного каскада усилителя могут перегреться и выйти из строя. В схеме можно использовать также отечественные детали, например транзисторы окончательного каскада вполне заменимы парой 818/819ГМ, эта серия транзисторов выпускалась в металлических корпусах. Транзисторы нужно укрепить на теплоотвод, заранее поставив изоляционную пленку между теплоотводом и корпусом транзистора. теплоотвод рекомендовано использовать с площадью 400 кв.см для каждого транзистора. Перед - выходной каскад тоже нужно укрепить на небольшие теплоотводы с площадью 100 кв.см

В схеме резистор R11 служит для установки тока покоя выходных транзисторов в пределах 70-100 мА. Конденсатор С4 определяет верхнюю границу усиления и уменьшать его номинал не стоит - возможно смовозбуждение на высоких частотах.

Светодиод желательно использовать тот, который указан в схеме, поскольку все светодиоды имеют разное напряжения падения и свечения, желательно впаять светодиод прямо на плату.

Выходные транзисторы ставим на радиаторы полезной площадью. для каждого. Транзисторы MJL4281 и MJL4302 можно заменить также на другую пару аналогов,например на пару MJL21193 и MJL21194. Предохранители на 3 ампер можно заменит на другие (по мощнее) или вовсе исключить из схемы.

Данный усилитель - отличный вариант для домашнего или автомобильного сабвуфера, но подогнать под саб не советую, поскольку усилитель очень качественный, искажений даже на максимальной громкости не наблюдаются, для питания в автомобиле нужен отдельный преобразователь напряжения, конструкции которых вы сможете найти на нашем сайте.